Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Juttner-Maxwell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 456 KiB  
Article
Tsallis Distribution as a Λ-Deformation of the Maxwell–Jüttner Distribution
by Jean-Pierre Gazeau
Entropy 2024, 26(3), 273; https://doi.org/10.3390/e26030273 - 21 Mar 2024
Cited by 1 | Viewed by 1515
Abstract
Currently, there is no widely accepted consensus regarding a consistent thermodynamic framework within the special relativity paradigm. However, by postulating that the inverse temperature 4-vector, denoted as β, is future-directed and time-like, intriguing insights emerge. Specifically, it is demonstrated that the q [...] Read more.
Currently, there is no widely accepted consensus regarding a consistent thermodynamic framework within the special relativity paradigm. However, by postulating that the inverse temperature 4-vector, denoted as β, is future-directed and time-like, intriguing insights emerge. Specifically, it is demonstrated that the q-dependent Tsallis distribution can be conceptualized as a de Sitterian deformation of the relativistic Maxwell–Jüttner distribution. In this context, the curvature of the de Sitter space-time is characterized by Λ/3, where Λ represents the cosmological constant within the ΛCDM standard model for cosmology. For a simple gas composed of particles with proper mass m, and within the framework of quantum statistical de Sitterian considerations, the Tsallis parameter q exhibits a dependence on the cosmological constant given by q=1+cΛ/n, where c=/mc is the Compton length of the particle and n is a positive numerical factor, the determination of which awaits observational confirmation. This formulation establishes a novel connection between the Tsallis distribution, quantum statistics, and the cosmological constant, shedding light on the intricate interplay between relativistic thermodynamics and fundamental cosmological parameters. Full article
Show Figures

Figure 1

10 pages, 325 KiB  
Article
Analysis of Self-Gravitating Fluid Instabilities from the Post-Newtonian Boltzmann Equation
by Gilberto M. Kremer
Entropy 2024, 26(3), 246; https://doi.org/10.3390/e26030246 - 10 Mar 2024
Cited by 2 | Viewed by 1383
Abstract
Self-gravitating fluid instabilities are analysed within the framework of a post-Newtonian Boltzmann equation coupled with the Poisson equations for the gravitational potentials of the post-Newtonian theory. The Poisson equations are determined from the knowledge of the energy–momentum tensor calculated from a post-Newtonian Maxwell–Jüttner [...] Read more.
Self-gravitating fluid instabilities are analysed within the framework of a post-Newtonian Boltzmann equation coupled with the Poisson equations for the gravitational potentials of the post-Newtonian theory. The Poisson equations are determined from the knowledge of the energy–momentum tensor calculated from a post-Newtonian Maxwell–Jüttner distribution function. The one-particle distribution function and the gravitational potentials are perturbed from their background states, and the perturbations are represented by plane waves characterised by a wave number vector and time-dependent small amplitudes. The time-dependent amplitude of the one-particle distribution function is supposed to be a linear combination of the summational invariants of the post-Newtonian kinetic theory. From the coupled system of differential equations for the time-dependent amplitudes of the one-particle distribution function and gravitational potentials, an evolution equation for the mass density contrast is obtained. It is shown that for perturbation wavelengths smaller than the Jeans wavelength, the mass density contrast propagates as harmonic waves in time. For perturbation wavelengths greater than the Jeans wavelength, the mass density contrast grows in time, and the instability growth in the post-Newtonian theory is more accentuated than the one of the Newtonian theory. Full article
(This article belongs to the Special Issue Statistical Mechanics of Self-Gravitating Systems)
Show Figures

Figure 1

8 pages, 564 KiB  
Article
First-Principle Derivation of Single-Photon Entropy and Maxwell–Jüttner Velocity Distribution
by Changhao Li, Jianfeng Li and Yuliang Yang
Entropy 2022, 24(11), 1609; https://doi.org/10.3390/e24111609 - 4 Nov 2022
Cited by 3 | Viewed by 2458
Abstract
This work is devoted to deriving the entropy of a single photon in a beam of light from first principles. Based on the quantum processes of light–matter interaction, we find that, if the light is not in equilibrium, there are two different ways, [...] Read more.
This work is devoted to deriving the entropy of a single photon in a beam of light from first principles. Based on the quantum processes of light–matter interaction, we find that, if the light is not in equilibrium, there are two different ways, depending on whether the photon is being added or being removed from the light, of defining the single-photon entropy of this light. However, when the light is in equilibrium at temperature T, the two definitions are equivalent and the photon entropy of this light is hν/T. From first principles, we also re-derive the Jüttner velocity distribution showing that, even without interatomic collisions, two-level atoms will relax to the state satisfying the Maxwell–Jüttner velocity distribution when they are moving in blackbody radiation fields. Full article
(This article belongs to the Special Issue Advances in Relativistic Statistical Mechanics II)
Show Figures

Figure 1

10 pages, 342 KiB  
Article
Post-Newtonian Jeans Equation for Stationary and Spherically Symmetrical Self-Gravitating Systems
by Gilberto Medeiros Kremer
Universe 2022, 8(3), 179; https://doi.org/10.3390/universe8030179 - 13 Mar 2022
Cited by 2 | Viewed by 2244
Abstract
The post-Newtonian Jeans equation for stationary self-gravitating systems is derived from the post-Newtonian Boltzmann equation in spherical coordinates. The Jeans equation is coupled with the three Poisson equations from the post-Newtonian theory. The Poisson equations are functions of the energy-momentum tensor components which [...] Read more.
The post-Newtonian Jeans equation for stationary self-gravitating systems is derived from the post-Newtonian Boltzmann equation in spherical coordinates. The Jeans equation is coupled with the three Poisson equations from the post-Newtonian theory. The Poisson equations are functions of the energy-momentum tensor components which are determined from the post-Newtonian Maxwell–Jüttner distribution function. As an application, the effect of a central massive black hole on the velocity dispersion profile of the host galaxy is investigated and the influence of the post-Newtonian corrections are determined. Full article
(This article belongs to the Special Issue Kinetic Processes in Relativistic Domain)
Show Figures

Figure 1

11 pages, 969 KiB  
Brief Report
A Note on Effects of Generalized and Extended Uncertainty Principles on Jüttner Gas
by Hooman Moradpour, Sarah Aghababaei and Amir Hadi Ziaie
Symmetry 2021, 13(2), 213; https://doi.org/10.3390/sym13020213 - 28 Jan 2021
Cited by 12 | Viewed by 2475
Abstract
In recent years, the implications of the generalized (GUP) and extended (EUP) uncertainty principles on Maxwell–Boltzmann distribution have been widely investigated. However, at high energy regimes, the validity of Maxwell–Boltzmann statistics is under debate and instead, the Jüttner distribution is proposed as the [...] Read more.
In recent years, the implications of the generalized (GUP) and extended (EUP) uncertainty principles on Maxwell–Boltzmann distribution have been widely investigated. However, at high energy regimes, the validity of Maxwell–Boltzmann statistics is under debate and instead, the Jüttner distribution is proposed as the distribution function in relativistic limit. Motivated by these considerations, in the present work, our aim is to study the effects of GUP and EUP on a system that obeys the Jüttner distribution. To achieve this goal, we address a method to get the distribution function by starting from the partition function and its relation with thermal energy which finally helps us in finding the corresponding energy density states. Full article
(This article belongs to the Special Issue Symmetry in Quantum Theory of Gravity)
Show Figures

Figure 1

7 pages, 1266 KiB  
Article
Doppler Broadening of Spectral Line Shapes in Relativistic Plasmas
by Mohammed Tayeb Meftah, Hadda Gossa, Kamel Ahmed Touati, Keltoum Chenini and Amel Naam
Atoms 2018, 6(2), 16; https://doi.org/10.3390/atoms6020016 - 4 Apr 2018
Cited by 3 | Viewed by 6047
Abstract
In this work, we report some relativistic effects on the spectral line broadening. In particular, we give a new Doppler broadening in extra hot plasmas that takes into account the possible high velocity of the emitters. This suggests the use of an appropriate [...] Read more.
In this work, we report some relativistic effects on the spectral line broadening. In particular, we give a new Doppler broadening in extra hot plasmas that takes into account the possible high velocity of the emitters. This suggests the use of an appropriate distribution of the velocities for the emitters. Indeed, the Juttner-Maxwell distribution of the velocities is more adequate for relativistic velocities of the emitters when the latter are in plasma with an extra high temperature. We find an asymmetry in the Doppler line shapes unlike the case of the traditional Doppler effect. Full article
(This article belongs to the Special Issue Spectral Line Shapes in Astrophysics and Related Topics)
Show Figures

Figure 1

34 pages, 1333 KiB  
Article
Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas
by Malvina B. Trzhaskovskaya and Vladimir K. Nikulin
Atoms 2015, 3(2), 86-119; https://doi.org/10.3390/atoms3020086 - 18 May 2015
Cited by 14 | Viewed by 5527
Abstract
Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are [...] Read more.
Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered. Full article
(This article belongs to the Special Issue Atomic Data for Tungsten)
Show Figures

Back to TopTop