Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (36,433)

Search Parameters:
Keywords = plasmas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 598 KiB  
Article
Mechanistic Insights and Real-World Evidence of Autologous Protein Solution (APS) in Clinical Use
by Jennifer Woodell-May, Kathleen Steckbeck, William King, Katie Miller, Bo Han, Vikas Vedi and Elizaveta Kon
Int. J. Mol. Sci. 2025, 26(15), 7577; https://doi.org/10.3390/ijms26157577 (registering DOI) - 5 Aug 2025
Abstract
Autologous therapies are currently being studied to determine if they can modulate the course of knee osteoarthritis symptoms and/or disease progression. One potential therapeutic target is the polarization of pro-inflammatory M1 macrophages to pro-healing M2 macrophages. The autologous therapy, Autologous Protein Solution (APS), [...] Read more.
Autologous therapies are currently being studied to determine if they can modulate the course of knee osteoarthritis symptoms and/or disease progression. One potential therapeutic target is the polarization of pro-inflammatory M1 macrophages to pro-healing M2 macrophages. The autologous therapy, Autologous Protein Solution (APS), was incubated with donor-matched human peripheral-derived macrophages for 10 days. M1 pro-inflammatory macrophages were determined by the percentage of CD80+ and M2 pro-healing macrophages were determined by CD68+ and CD163+ by epifluorescent microscopy. To determine clinical effectiveness, an APS-specific minimal clinically important improvement (MCII) using an anchor-based method was calculated in a randomized controlled trial of APS (n = 46) and then applied to a real-world registry study (n = 78) to determine the percentage of pain responders. Compared to control media, APS statistically increased the percentage of M2 macrophages and decreased the percentage of M1 macrophages, while platelet-poor plasma had no effect on polarization. In the randomized controlled trial (RCT), the MCII at the 12-month follow-up visit was calculated as 2.0 points on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scale and 7.5 points on the WOMAC function scale. Applying this MCII to the real-world registry data, 62.5% of patients met the MCII with an average of 4.7 ± 2.5 points of improvement in pain. Autologous therapies can influence macrophage polarization and have demonstrated clinical effectiveness in a real-world patient setting. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Approaches to Osteoarthritis)
Show Figures

Figure 1

18 pages, 899 KiB  
Article
Biomarkers of Metabolism and Inflammation in Individuals with Obesity and Normal Weight: A Comparative Analysis Exploring Sex Differences
by Eveline Gart, Jessica Snabel, Jelle C. B. C. de Jong, Lars Verschuren, Anita M. van den Hoek, Martine C. Morrison and Robert Kleemann
Int. J. Mol. Sci. 2025, 26(15), 7576; https://doi.org/10.3390/ijms26157576 (registering DOI) - 5 Aug 2025
Abstract
Blood-based biomarkers allow monitoring of an individual’s health status and provide insights into metabolic and inflammatory processes in conditions like obesity, cardiovascular, and liver diseases. However, selecting suitable biomarkers and optimizing analytical assays presents challenges, is time-consuming and laborious. Moreover, knowledge of potential [...] Read more.
Blood-based biomarkers allow monitoring of an individual’s health status and provide insights into metabolic and inflammatory processes in conditions like obesity, cardiovascular, and liver diseases. However, selecting suitable biomarkers and optimizing analytical assays presents challenges, is time-consuming and laborious. Moreover, knowledge of potential sex differences remains incomplete as research is often carried out in men. This study aims at enabling researchers to make informed choices on the type of biomarkers, analytical assays, and dilutions being used. More specifically, we analyzed plasma concentrations of >90 biomarkers using commonly available ELISA or electrochemiluminescence-based multiplex methods, comparing normal weight (BMI < 25; n = 40) with obese (BMI > 30; n = 40) adult blood donors of comparable age. To help choose optimal biomarker sets, we grouped frequently employed biomarkers into biological categories (e.g., adipokines, acute-phase proteins, complement factors, cytokines, myokines, iron metabolism, vascular inflammation), first comparing normal-weight with obese persons, and thereafter exploratively comparing women and men within each BMI group. Many biomarkers linked to chronic inflammation and dysmetabolism were elevated in persons with obesity, including several adipokines, interleukins, chemokines, acute-phase proteins, complement factors, and oxidized LDL. Further exploration suggests sex disparities in biomarker levels within both normal-weight and obese groups. This comprehensive dataset of biomarkers across diverse biological domains constitutes a reference resource that may provide valuable guidance for researchers in selecting appropriate biomarkers and analytical assays for own studies. Moreover, the dataset highlights the importance of taking possible sex differences into account. Full article
25 pages, 4851 KiB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r,q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
23 pages, 1610 KiB  
Article
Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus
by Mariana Vaz, Gonçalo Espregueira Themudo, Felipe Bolgenhagen Schöninger, Inês Carvalho, Carolina Tafalla, Patricia Díaz-Rosales, Lourenço Ramos-Pinto, Benjamín Costas and Marina Machado
Biology 2025, 14(8), 1003; https://doi.org/10.3390/biology14081003 - 5 Aug 2025
Abstract
Viral outbreaks have caused significant mortality and economic losses in aquaculture, highlighting the urgent need for effective therapies and a deeper understanding of antiviral and immune mechanisms in key species. This study investigates the constitutive and virus-induced antiviral responses in juvenile rainbow trout [...] Read more.
Viral outbreaks have caused significant mortality and economic losses in aquaculture, highlighting the urgent need for effective therapies and a deeper understanding of antiviral and immune mechanisms in key species. This study investigates the constitutive and virus-induced antiviral responses in juvenile rainbow trout (Oncorhynchus mykiss) following infection with viral hemorrhagic septicemia virus (VHSV). Trout (30 g) were infected by immersion with VHSV (TCID50 = 105 mL−1) for two hours. Samples were collected at 24, 72, and 120 h post-infection to assess hematology, innate immunity, viral load, and transcriptomic response. At 24 h post-infection, no immune response or increase in viral load was detected, suggesting the host had not yet recognized the virus and was still in the incubation phase. By 72 h, viral replication peaked, with high viral loads observed in mucosal tissues (skin and gills) and immune organs (kidney, spleen, liver), alongside strong up-regulation of antiviral genes, such as viperin. This gene maintained high expression through the final sampling point, indicating its key role in the antiviral response. At this stage, reduced immune competence was observed, marked by elevated nitric oxide and circulating thrombocytes. At 120 h, modest increases in peripheral monocyte, plasma lysozyme, and peroxidase activity were detected; however, these responses were insufficient to reduce viral load, suggesting the resolution phase had not yet begun. In summary, while a limited immune response was observed by the end of the trial, the consistent antiviral activity of viperin from peak infection to 120 h post-infection underscores its importance in the defence against VHSV in rainbow trout. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

31 pages, 1732 KiB  
Review
GLUT4 Trafficking and Storage Vesicles: Molecular Architecture, Regulatory Networks, and Their Disruption in Insulin Resistance
by Hana Drobiova, Ghadeer Alhamar, Rasheed Ahmad, Fahd Al-Mulla and Ashraf Al Madhoun
Int. J. Mol. Sci. 2025, 26(15), 7568; https://doi.org/10.3390/ijms26157568 (registering DOI) - 5 Aug 2025
Abstract
Insulin-regulated glucose uptake is a central mechanism in maintaining systemic glucose homeostasis, primarily occurring in skeletal muscle and adipose tissue. This process relies on the insulin-stimulated translocation of the glucose transporter, GLUT4, from specialized intracellular compartments, known as GLUT4 storage vesicles (GSVs), to [...] Read more.
Insulin-regulated glucose uptake is a central mechanism in maintaining systemic glucose homeostasis, primarily occurring in skeletal muscle and adipose tissue. This process relies on the insulin-stimulated translocation of the glucose transporter, GLUT4, from specialized intracellular compartments, known as GLUT4 storage vesicles (GSVs), to the plasma membrane. Disruption of this pathway is a hallmark of insulin resistance and a key contributor to the pathogenesis of type 2 diabetes. Recent advances have provided critical insights into both the insulin signalling cascades and the complex biogenesis, as well as the trafficking and fusion dynamics of GSVs. This review synthesizes the current understanding of the molecular mechanisms governing GSV mobilization and membrane fusion, highlighting key regulatory nodes that may become dysfunctional in metabolic disease. By elucidating these pathways, we propose new therapeutic avenues targeting GSV trafficking to improve insulin sensitivity and combat type 2 diabetes. Full article
Show Figures

Figure 1

18 pages, 2229 KiB  
Article
Cell Surface Proteomics Reveals Hypoxia-Regulated Pathways in Cervical and Bladder Cancer
by Faris Alanazi, Ammar Sharif, Melissa Kidd, Emma-Jayne Keevill, Vanesa Biolatti, Richard D. Unwin, Peter Hoskin, Ananya Choudhury, Tim A. D. Smith and Conrado G. Quiles
Proteomes 2025, 13(3), 36; https://doi.org/10.3390/proteomes13030036 - 5 Aug 2025
Abstract
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we [...] Read more.
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we employed a surface proteomics workflow combining cell surface biotinylation and affinity purification prior to LC-MS/MS analysis in cervical (SiHa) and bladder (UMUC3) cancer cell lines cultured under normoxic (21% O2) or hypoxic (0.1% O2) conditions. Results: In SiHa cells, 43 hypoxia-upregulated proteins were identified exclusively in the biotin-enriched fraction, including ITGB2, ITGA7, AXL, MET, JAG2, and CAV1/CAV2. In UMUC3 cells, 32 unique upregulated PMPs were detected, including CD55, ADGRB1, SLC9A1, NECTIN3, and ACTG1. These proteins were not observed in corresponding whole-cell lysates and are associated with extracellular matrix remodelling, immune modulation, and ion transport. Biotinylation enhanced the detection of membrane-associated pathways such as ECM organisation, integrin signalling, and PI3K–Akt activation. Protein–protein interaction analysis revealed links between membrane receptors and intracellular stress regulators, including mitochondrial proteins. Conclusions: These findings demonstrate that surface biotinylation improves the sensitivity and selectivity of plasma membrane proteomics under hypoxia, revealing hypoxia-responsive proteins and pathways not captured by standard whole-cell analysis. Full article
(This article belongs to the Section Proteomics of Human Diseases and Their Treatments)
Show Figures

Figure 1

23 pages, 2081 KiB  
Article
Rapid Soil Tests for Assessing Soil Health
by Jan Adriaan Reijneveld and Oene Oenema
Appl. Sci. 2025, 15(15), 8669; https://doi.org/10.3390/app15158669 (registering DOI) - 5 Aug 2025
Abstract
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and [...] Read more.
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and sustainable agriculture. Despite its relevance to several United Nations Sustainable Development Goals (SDGs 1, 2, 3, 6, 12, 13, and 15), comprehensive soil health testing is not widely practiced due to complexity and cost. The aim of the study presented here was to contribute to the further development, implementation, and testing of an integrated procedure for soil health assessment in practice. We developed and tested a rapid, standardized soil health assessment tool that combines near-infrared spectroscopy (NIRS) and multi-nutrient 0.01 M CaCl2 extraction with Inductive Coupled Plasma Mass Spectroscopy analysis. The tool evaluates a wide range of soil characteristics with high accuracy (R2 ≥ 0.88 for most parameters) and has been evaluated across more than 15 countries, including those in Europe, China, New Zealand, and Vietnam. The results are compiled into a soil health indicator report with tailored management advice and a five-level ABCDE score. In a Dutch test set, 6% of soils scored A (optimal), while 2% scored E (degraded). This scalable tool supports land users, agrifood industries, and policymakers in advancing sustainable soil management and evidence-based environmental policy. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
Show Figures

Figure 1

11 pages, 468 KiB  
Article
Association of Therapeutic Plasma Exchange-Treated Thrombotic Thrombocytopenic Purpura with Improved Mortality Outcome in End-Stage Renal Disease
by Brenna S. Kincaid, Kiana Kim, Jennifer L. Waller, Stephanie L. Baer, Wendy B. Bollag and Roni J. Bollag
Diseases 2025, 13(8), 247; https://doi.org/10.3390/diseases13080247 - 5 Aug 2025
Abstract
Background/Objectives: Thrombotic thrombocytopenic purpura (TTP) is a microangiopathic hemolytic anemia exhibiting 90% mortality without prompt treatment. The aim of this study was to investigate the association of therapeutic plasma exchange (TPE)-treated TTP in end-stage renal disease (ESRD) patients with mortality, demographics, and [...] Read more.
Background/Objectives: Thrombotic thrombocytopenic purpura (TTP) is a microangiopathic hemolytic anemia exhibiting 90% mortality without prompt treatment. The aim of this study was to investigate the association of therapeutic plasma exchange (TPE)-treated TTP in end-stage renal disease (ESRD) patients with mortality, demographics, and clinical comorbidities. We queried the United States Renal Data System for ESRD patients starting dialysis between 1 January 2005 and 31 December 2018, using International Classification of Diseases (ICD)-9 and ICD-10 codes for thrombotic microangiopathy, with a TPE procedure code entered within 7 days. Methods: Cox proportional hazards models were used to assess mortality, adjusting for demographic and clinical factors. Results: Among 1,155,136 patients, increased age [adjusted odds ratio (OR) = 0.96, 95% confidence interval (CI): 0.94–0.96]; black race (OR = 0.67, CI: 0.51–0.89); and Hispanic ethnicity (OR = 0.43, CI: 0.28–0.66) were associated with a lower risk of TPE-treated TTP diagnosis, whereas female sex (OR = 1.59, CI: 1.25–2.02) and tobacco use (OR = 2.08, CI: 1.58–2.75) had a higher risk. A claim for TPE-treated TTP carried a lower risk of death (adjusted hazard ratio = 0.024, CI: 0.021–0.028). Female sex, black race, Hispanic ethnicity, and hypothyroidism were also associated with decreased all-cause mortality. Conclusions: These findings suggest that ESRD patients with TPE-treated TTP are significantly protected from mortality compared with ESRD patients without this diagnosis. Full article
Show Figures

Figure 1

22 pages, 688 KiB  
Review
The Evolving Treatment Landscape for the Elderly Multiple Myeloma Patient: From Quad Regimens to T-Cell Engagers and CAR-T
by Matthew James Rees and Hang Quach
Cancers 2025, 17(15), 2579; https://doi.org/10.3390/cancers17152579 - 5 Aug 2025
Abstract
Multiple myeloma (MM) is predominantly a disease of the elderly. In recent years, a surge of highly effective plasma cell therapies has revolutionized the care of elderly multiple myeloma (MM) patients, for whom frailty and age-related competing causes of mortality determine management. Traditionally, [...] Read more.
Multiple myeloma (MM) is predominantly a disease of the elderly. In recent years, a surge of highly effective plasma cell therapies has revolutionized the care of elderly multiple myeloma (MM) patients, for whom frailty and age-related competing causes of mortality determine management. Traditionally, the treatment of newly diagnosed elderly patients has centered on doublet or triplet combinations composed of immunomodulators (IMIDs), proteasome inhibitors (PIs), anti-CD38 monoclonal antibodies (mAbs), and corticosteroids producing median progression-free survival (PFS) rates between 34 and 62 months. However, recently, a series of large phase III clinical trials examining quadruplet regimens of PIs, IMIDs, corticosteroids, and anti-CD38 mAbs have shown exceptional outcomes, with median PFS exceeding 60 months, albeit with higher rates of peripheral neuropathy (≥Grade 2: 27% vs. 10%) when PIs and IMIDs are combined, and infections (≥Grade 3: 40% vs. 29–41%) with the addition of anti-CD38mAbs. The development of T-cell redirecting therapies including T-cell engagers (TCEs) and CAR-T cells has further expanded the therapeutic arsenal. TCEs have shown exceptional activity in relapsed disease and are being explored in the newly diagnosed setting with promising early results. However, concerns remain regarding the logistical challenges of step-up dosing, which often necessitates inpatient admission, the infectious risks, and the financial burden associated with TCEs in elderly patients. CAR-T, the most potent commercially available therapy for MM, offers the potential of a ‘one and done’ approach. However, its application to elderly patients has been tempered by significant concerns of cytokine release syndrome, early and delayed neurological toxicity, and its overall tolerability in frail patients. Robust data in frail patients are still needed. How CAR-T and TCEs will be sequenced among the growing therapeutic armamentarium for elderly MM patients remains to be determined. This review explores the safety, efficacy, cost, and logistical barriers associated with the above treatments in elderly MM patients. Full article
Show Figures

Figure 1

13 pages, 1291 KiB  
Article
Preoperative Expression Profiles of miR-146a and miR-221 as Potential Biomarkers for Differentiating Benign from Malignant Thyroid Nodules
by Mervat Matei, Sergiu-Ciprian Matei, Cristina Stefania Dumitru, Roxana Popescu, Ligia Petrica, Ioana Golu, Marioara Cornianu, Isabella Ionela Stoian and Mihaela Maria Vlad
Int. J. Mol. Sci. 2025, 26(15), 7564; https://doi.org/10.3390/ijms26157564 (registering DOI) - 5 Aug 2025
Abstract
Thyroid cancer is the most common endocrine malignancy, and preoperative distinction between benign and malignant nodules remains challenging, especially in cytologically indeterminate cases. Circulating microRNAs (miRNAs) have gained interest as non-invasive biomarkers due to their stability and involvement in tumorigenesis. This study aimed [...] Read more.
Thyroid cancer is the most common endocrine malignancy, and preoperative distinction between benign and malignant nodules remains challenging, especially in cytologically indeterminate cases. Circulating microRNAs (miRNAs) have gained interest as non-invasive biomarkers due to their stability and involvement in tumorigenesis. This study aimed to assess the preoperative diagnostic value of circulating miR-146a and miR-221 in patients undergoing thyroidectomy. A total of 56 patients were included, of whom 24 had malignant and 32 had benign thyroid lesions confirmed by histopathology. Preoperative plasma levels of miR-146a and miR-221 were quantified using qRT-PCR, and relative expression was calculated with the 2−ΔΔCt method. miR-221 expression was significantly higher in malignant cases, with an area under the ROC curve of 1.00, achieving 100% sensitivity and specificity at the optimal threshold. miR-146a showed no significant discriminatory ability. Weak correlations were observed between miRNA expression and clinical parameters such as age, TIRADS score, or thyroid volume. Logistic regression including miR-221 led to perfect separation, indicating strong predictive capacity but precluding multivariate modeling. These findings suggest that circulating miR-221 may serve as a highly accurate biomarker for thyroid malignancy and warrant further validation in larger, prospective cohorts. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Figure 1

17 pages, 7024 KiB  
Article
Proteomic Analysis of Differentially Expressed Plasma Exosome Proteins in Heat-Stressed Holstein cows
by Shuwen Xia, Yingying Jiang, Wenjie Li, Zhenjiang An, Yangyang Shen, Qiang Ding and Kunlin Chen
Animals 2025, 15(15), 2286; https://doi.org/10.3390/ani15152286 - 5 Aug 2025
Abstract
Heat stress in dairy cows, caused by high temperature and humidity during summer, has led to significant declines in milk production and severe economic losses for farms. Exosomes—extracellular vesicles carrying bioactive molecules—are critical for intercellular communication and immunity but remain understudied in heat-stressed [...] Read more.
Heat stress in dairy cows, caused by high temperature and humidity during summer, has led to significant declines in milk production and severe economic losses for farms. Exosomes—extracellular vesicles carrying bioactive molecules—are critical for intercellular communication and immunity but remain understudied in heat-stressed Holstein cows. In this study, we extracted exosomes from three heat-stressed (HS) cows and three non-heat-stressed (Ctr) cows and employed proteomics to analyze plasma exosomes. We identified a total of 28 upregulated and 18 downregulated proteins in the HS group compared to the control group. Notably, we observed a significant upregulation of key protein groups, including cytoskeletal regulators, signaling mediators, and coagulation factors, alongside the downregulation of HP-25_1. These differentially expressed proteins demonstrate strong potential as heat stress biomarkers. GO and KEGG analyses linked the differentially expressed proteins to actin cytoskeleton regulation and endoplasmic reticulum pathways. Additionally, protein–protein interaction (PPI) analysis revealed the PI3K-Akt signaling pathway as a central node in the cellular response to heat stress. These findings establish plasma exosomes as valuable biospecimens, provide valuable insights into the molecular mechanisms of heat stress response, and may contribute to the development of precision breeding strategies for enhanced thermal resilience in dairy herds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

22 pages, 1000 KiB  
Review
Is the Activation of the Postsynaptic Ligand Gated Glycine- or GABAA Receptors Essential for the Receptor Clustering at Inhibitory Synapses?
by Eva Kiss, Joachim Kirsch, Jochen Kuhse and Stefan Kins
Biomedicines 2025, 13(8), 1905; https://doi.org/10.3390/biomedicines13081905 - 5 Aug 2025
Abstract
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key [...] Read more.
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key moment of synaptogenesis and determinant for effective synaptic transmission. The number of the ionotropic neurotransmitter receptors at these postsynaptic sites of both excitatory and inhibitory synapses is variable and is regulated by different mechanisms, thus allowing the modulation of synaptic strength, which is essential to tune neuronal network activity. Several well-regulated processes seem to be involved, including lateral diffusion within the plasma membrane and local anchoring as well as receptor endocytosis and recycling. The molecular mechanisms implicated are numerous and were reviewed recently in great detail. The role of pre-synaptically released neurotransmitters within the complex regulatory apparatus organizing the postsynaptic site underneath presynaptic terminals is not completely understood, even less for inhibitory synapses. In this mini review article, we focus on this aspect of synapse formation, summarizing and contrasting findings on the functional role of the neurotransmitters glycine and γ-aminobutyric acid (GABA) for initiation of postsynaptic receptor clustering and regulation of Cl channel receptor numbers at inhibitory synapses gathered over the last two decades. Full article
(This article belongs to the Special Issue Synaptic Function and Modulation in Health and Disease)
Show Figures

Figure 1

16 pages, 4455 KiB  
Article
Effect of Alpha2-Plasmin Inhibitor C-Terminal Heterogeneity on Clot Lysis and Clot Structure
by Réka Bogáti, Barbara Baráth, Dóra Pituk, Rita Orbán-Kálmándi, Péter Szűcs, Zoltán Hegyi, Zsuzsanna Bereczky, Zsuzsa Bagoly and Éva Katona
Biomolecules 2025, 15(8), 1127; https://doi.org/10.3390/biom15081127 - 5 Aug 2025
Abstract
Alpha2-plasmin inhibitor (α2PI) has a heterogeneous structure due to proteolytic cleavages in the circulation. The C-terminally cleaved form loses the plasminogen binding site and is, therefore, a slow plasmin inhibitor (NPB-α2PI). As FXIII primarily crosslinks the plasminogen-binding intact form (PB-α2PI) to fibrin, the [...] Read more.
Alpha2-plasmin inhibitor (α2PI) has a heterogeneous structure due to proteolytic cleavages in the circulation. The C-terminally cleaved form loses the plasminogen binding site and is, therefore, a slow plasmin inhibitor (NPB-α2PI). As FXIII primarily crosslinks the plasminogen-binding intact form (PB-α2PI) to fibrin, the effect of NPB-α2PI on fibrinolysis has been less studied. Herein, we investigated the effect of C-terminal truncation. Total-, PB-, and NPB-α2PI antigen levels and α2PI incorporation were measured by ELISAs from samples of 80 healthy individuals. Clot lysis parameters of the same subjects were investigated using an in vitro clot lysis assay. α2PI incorporation into the clot was demonstrated by Western blotting. Clot lysis and clot structure were also analyzed using an α2PI-deficient plasma substituted with recombinant PB- and NPB-α2PI. Both plasma and clot-bound levels of total- and NPB-α2PI showed a significant positive correlation with clot lysis parameters. NPB-α2PI was detected in the clot due to non-covalent binding. Regardless of the type of binding, both forms affected the clot structure by increasing the thickness of the fibrin fibers and reducing the pore size. In conclusion, we found that NPB-α2PI can bind non-covalently to fibrin, and this binding contributes to changes in clot structure and inhibition of fibrinolysis. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

20 pages, 4576 KiB  
Article
Physical, Chemical, Mineralogical, and Toxicological Characterization of Active and Inactive Tailings in the Arequipa Region, Peru
by Dery Castillo, Karol Palma, Lizbeth Santander, Héctor Bolaños, Gregorio Palma and Patricio Navarro
Minerals 2025, 15(8), 830; https://doi.org/10.3390/min15080830 (registering DOI) - 5 Aug 2025
Abstract
Mining activity in Peru generates environmental liabilities with the potential to release toxic metals into the environment. This study conducted a comprehensive physical, chemical, mineralogical, and toxicological characterization of ten active and inactive tailings samples from the Arequipa region in southern Peru. Particle [...] Read more.
Mining activity in Peru generates environmental liabilities with the potential to release toxic metals into the environment. This study conducted a comprehensive physical, chemical, mineralogical, and toxicological characterization of ten active and inactive tailings samples from the Arequipa region in southern Peru. Particle size distribution analysis, inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and the Toxicity Characteristic Leaching Procedure (TCLP) followed by ICP-MS were employed. The results revealed variable particle size distributions, with the sample of Secocha exhibiting the finest granulometry. Chemically, 8 out of 10 samples exhibited concentrations of at least two metals surpassing the Peruvian Environmental Quality Standards (EQS) for soils with values reaching >6000 mg/kg of arsenic (Paraiso), 193.1 mg/kg of mercury (Mollehuaca), and 2309 mg/kg of zinc (Paraiso). Mineralogical analysis revealed the presence of sulfides such as arsenopyrite, cinnabar, galena, and sphalerite, along with uraninite in the Otapara sample. In the TCLP tests, 5 out of 10 samples released at least two metals exceeding the environmental standards on water quality, with concentrations up to 0.401 mg/L for mercury (Paraiso), 0.590 mg/L for lead (Paraiso), and 9.286 mg/L for zinc (Kiowa Cobre). These results demonstrate elevated levels of Potentially Toxic Elements (PTEs) in both solid and dissolved states, reflecting a critical geochemical risk in the evaluated areas. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

21 pages, 4468 KiB  
Article
A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology
by Hongliang Pei, Qingwen Fan, Yixiang Duan and Mingtao Zhang
Appl. Sci. 2025, 15(15), 8640; https://doi.org/10.3390/app15158640 (registering DOI) - 4 Aug 2025
Abstract
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and [...] Read more.
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and extrinsic camera parameters accurately. Based on the pinhole imaging model, disparity maps were obtained via pixel matching to reconstruct high-precision 3D ablation morphology. A mathematical model was established to analyze how key imaging parameters—baseline distance, focal length, and depth of field—affect reconstruction accuracy in micro-imaging environments. Focusing on trace element detection in WC-Co alloy samples, the reconstructed ablation craters enabled the precise calculation of ablation volumes and revealed their correlations with laser parameters (energy, wavelength, pulse duration) and the physical-chemical properties of the samples. Multivariate regression analysis was employed to investigate how ablation morphology and plasma evolution jointly influence LIBS quantification. A nonlinear calibration model was proposed, significantly suppressing matrix effects, achieving R2 = 0.987, and reducing RMSE to 0.1. This approach enhances micro-scale LIBS accuracy and provides a methodological reference for high-precision spectral analysis in environmental and materials applications. Full article
(This article belongs to the Special Issue Novel Laser-Based Spectroscopic Techniques and Applications)
Show Figures

Figure 1

Back to TopTop