External Radiation Assistance of Neutrinoless Double Electron Capture
Abstract
:1. Introduction
2. Environmental Effect of the Neutrinoless Double Electron Capture (0ν2ec) Process
2.1. Resonant Character of the Neutrinoless Double Electron Capture (0ν2ec)
2.2. Resonance Tuning Using X-ray Radiation
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998, 81, 1562. [Google Scholar] [CrossRef]
- Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; et al. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 011301. [Google Scholar] [CrossRef]
- Eguchi, K.; Enomoto, S.; Furuno, K.; Goldman, J.; Hanada, H.; Ikeda, H.; Ikeda, K.; Inoue, K.; Ishihara, K.; Itoh, W.; et al. First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance. Phys. Rev. Lett. 2003, 90, 021802. [Google Scholar] [CrossRef] [PubMed]
- Kajita, T. Nobel Lecture: Discovery of atmospheric neutrino oscillations. Rev. Mod. Phys. 2016, 88, 030501. [Google Scholar] [CrossRef]
- McDonald, A.B. Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos *. Rev. Mod. Phys. 2016, 88, 030502. [Google Scholar] [CrossRef]
- Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim. 1937, 14, 171–184. [Google Scholar] [CrossRef]
- Schechter, J.; Valle, J.W.F. Neutrinoless Double beta Decay in SU(2)×U(1) Theories. Phys. Rev. D 1982, 25, 2951. [Google Scholar] [CrossRef]
- Furry, W.H. On Transition Probabilities in Double Beta-Disintegration. Phys. Rev. 1939, 56, 1184–1193. [Google Scholar] [CrossRef]
- Dolinski, M.J.; Poon, A.W.; Rodejohann, W. Neutrinoless double-beta decay: Status and prospects. Annu. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef]
- Blaum, K.; Eliseev, S.; Danevich, F.A.; Tretyak, V.I.; Kovalenko, S.; Krivoruchenko, M.I.; Novikov, Y.N.; Suhonen, J. Neutrinoless double-electron capture. Rev. Mod. Phys. 2020, 92, 045007. [Google Scholar] [CrossRef]
- Winter, R.G.; Double, K. Capture and Single K Capture with Positron Emission. Phys. Rev. 1955, 100, 142–144. [Google Scholar] [CrossRef]
- Winter, R.G. Search for Double Beta Decay in Cadmium and Molybdenum. Phys. Rev. 1955, 99, 88. [Google Scholar] [CrossRef]
- Georgi, H.M.; Glashow, S.L.; Nussinov, S. Unconventional model of neutrino masses. Nucl. Phys. B 1981, 193, 297–316. [Google Scholar] [CrossRef]
- Voloshin, M.B.; Mitsel’makher, G.V.; Eramzhyan, R.A. Conversion of an atomic electron into a positron and double β + decay. JETP Lett. 1982, 35, 656–659. [Google Scholar]
- Bernabeu, J.; De Rujula, A.; Jarlskog, C. Neutrinoless double electron capture as a tool to measure the electron neutrino mass. Nucl. Phys. B 1983, 223, 15–28. [Google Scholar] [CrossRef]
- Sujkowski, Z.; Wycech, S. Neutrinoless double electron capture: A tool to search for Majorana neutrino. Phys. Rev. C 2004, 70, 052501. [Google Scholar] [CrossRef]
- Karpeshin, F.F. On neutrinoless double e capture problem. Phys. Part. Nucl. Lett. 2008, 5, 379–382. [Google Scholar] [CrossRef]
- Karpeshin, F.F.; Trzhaskovskaya, M.B. Shake-off in the 164Er neutrinoless double electronic capture and the dark matter puzzle. Phys. Rev. C 2023, 107, 045502. [Google Scholar] [CrossRef]
- Brümmer, T.; Bohlen, S.; Grüner, F.; Osterhoff, J.; Põder, K. Compact all-optical precision-tunable narrowband hard Compton X-ray source. Sci. Rep. 2022, 12, 16017. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X. Inverse Compton gamma-ray source driven by a plasma flying mirror. JOSA B 2023, 4, 3262–3268. [Google Scholar] [CrossRef]
- Geloni, G.; Saldin, E.; Samoylova, L.; Schneidmiller, E.; Sinn, H.; Tschentscher, T.; Yurkov, M. Coherence properties of the European XFEL. New J. Phys. 2010, 12, 035021. [Google Scholar] [CrossRef]
- Milne, C.J.; Schietinger, T.; Aiba, M.; Alarcon, A.; Alex, J.; Anghel, A.; Arsov, V.; Beard, C.; Beaud, P.; Bettoni, S.; et al. SwissFEL: The Swiss X-ray free electron laser. Appl. Sci. 2017, 7, 720. [Google Scholar] [CrossRef]
- Duris, J.; Li, S.; Driver, T.; Champenois, E.G.; MacArthur, J.P.; Lutman, A.A.; Zhang, Z.; Rosenberger, P.; Aldrich, J.W.; Coffee, R.; et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 2020, 14, 30–36. [Google Scholar] [CrossRef]
- Budker, D.; Berengut, J.C.; Flambaum, V.V.; Gorchtein, M.; Jin, J.; Karbstein, F.; Krasny, M.W.; Litvinov, Y.A.; Pálffy, A.; Pascalutsa, V.; et al. Expanding Nuclear Physics Horizons with the Gamma Factory (Ann. Phys. 3/2022). Ann. Phys. 2022, 534, 2270005. [Google Scholar] [CrossRef]
- Agostini, M.; GERDA Collaboration; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; et al. Limit on the radiative neutrinoless double electron capture of 36Ar from GERDA Phase I. Eur. Phys. J. C 2016, 76, 652. [Google Scholar] [CrossRef]
- Angloher, G.; Bauer, M.; Bauer, P.; Bavykina, I.; Bento, A.; Bucci, C.; Canonica, L.; Ciemniak, C.; Defay, X.; Deuter, G.; et al. New limits on double electron capture of 40Ca and 180W. J. Phys. G 2016, 43, 095202. [Google Scholar] [CrossRef]
- Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, L.; Aničin, I. New results on the double β decay of iron. Phys. Rev. C 1998, 58, 2566. [Google Scholar] [CrossRef]
- Gavrilyuk, Y.M.; Gangapshev, A.M.; Kazalov, V.V.; Kuzminov, V.V.; Panasenko, S.I.; Ratkevich, S.S. Indications of 2ν2K capture in 78Kr. Phys. Rev. C 2013, 87, 035501. [Google Scholar] [CrossRef]
- Ratkevich, S.S.; Gangapshev, A.M.; Gavrilyuk, Y.M.; Karpeshin, F.F.; Kazalov, V.V.; Kuzminov, V.V.; Yakimenko, S.P. Comparative study of the double-K-shell-vacancy production in single-and double-electron-capture decay. Phys. Rev. C 2017, 96, 065502. [Google Scholar] [CrossRef]
- Bukhner, E.; Vishnevskij, I.N.; Danevich, F.A. Rare decays of mercury nuclei. Sov. J. Nucl. Phys. 1990, 52, 193–197. [Google Scholar]
- Meshik, A.P.; Hohenberg, C.M.; Pravdivtseva, O.V.; Kapusta, Y.S. Weak decay of 130Ba and 132Ba: Geochemical measurements. Phys. Rev. C 2001, 64, 035205. [Google Scholar] [CrossRef]
- Zon, B.A.; Karpeshin, F.F. Acceleration of the decay of 235mU by laser-induced resonant internal conversion. Sov. Phys. JETP 1990, 70, 224. [Google Scholar]
- Karpeshin, F.F. Instantaneous Fission in Muonic Atoms and Resonance Conversion; Nauka: St. Petersburg, Russia, 2006. (In Russian) [Google Scholar]
- Karpeshin, F.F. Resonance Internal Conversion as the way of accelerating nuclear processes. Phys. Part. Nucl. 2006, 37, 522. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory. In Course of Theoretical Physics; Pergamon: New York, NY, USA, 1977; Volume 3. [Google Scholar]
- Kondratyev, V.N. Magnetorotational supernova neutrino emission spectra and prospects for observations by large-size underwater telescopes. Phys. At. Nucl. 2023, 86, 1083–1089. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratyev, V.N.; Karpeshin, F.F. External Radiation Assistance of Neutrinoless Double Electron Capture. Atoms 2024, 12, 27. https://doi.org/10.3390/atoms12050027
Kondratyev VN, Karpeshin FF. External Radiation Assistance of Neutrinoless Double Electron Capture. Atoms. 2024; 12(5):27. https://doi.org/10.3390/atoms12050027
Chicago/Turabian StyleKondratyev, Vladimir N., and Feodor F. Karpeshin. 2024. "External Radiation Assistance of Neutrinoless Double Electron Capture" Atoms 12, no. 5: 27. https://doi.org/10.3390/atoms12050027
APA StyleKondratyev, V. N., & Karpeshin, F. F. (2024). External Radiation Assistance of Neutrinoless Double Electron Capture. Atoms, 12(5), 27. https://doi.org/10.3390/atoms12050027