Structure Calculations in Nd III and U III Relevant for Kilonovae Modelling
Abstract
:1. Introduction
2. Methods
2.1. Expansion Opacities
2.2. Atomic Calculations
3. Results and Discussion
3.1. Nd III
3.2. U III
3.3. Expansion Opacities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. LRR 2016, 19, 1. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar] [CrossRef]
- Metzger, B.D.; Martínez-Pinedo, G.; Darbha, S.; Quataert, E.; Arcones, A.; Kasen, D.; Thomas, R.; Nugent, P.; Panov, I.V.; Zinner, N.T. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 2010, 406, 2650–2662. [Google Scholar] [CrossRef]
- Barnes, J.; Kasen, D. Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 2013, 775, 18. [Google Scholar] [CrossRef]
- Kasen, D.; Badnell, N.R.; Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 2013, 774, 25. [Google Scholar] [CrossRef] [Green Version]
- Wollaeger, R.T.; Korobkin, O.; Fontes, C.J.; Rosswog, S.K.; Even, W.P.; Fryer, C.L.; Sollerman, J.; Hungerford, A.L.; Van Rossum, D.R.; Wollaber, A.B. Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers. Mon. Not. R. Astron. Soc. 2017, 478, 3298–3334. [Google Scholar] [CrossRef]
- Tanaka, M.; Kato, D.; Gaigalas, G.; Rynkun, P.; Radžiūtė, L.; Wanajo, S.; Sekiguchi, Y.; Nakamura, N.; Tanuma, H.; Murakami, I.; et al. Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers. Astrophys. J. 2018, 852, 109. [Google Scholar] [CrossRef]
- Fontes, C.J.; Fryer, C.L.; Hungerford, A.L. A connection between atomic physics and gravitational wave spectroscopy. AIP Conf. Proc. 2017, 1811, 190. [Google Scholar] [CrossRef]
- Mccann, M.; Bromley, S.; Loch, S.D.; Ballance, C.P. Atomic data calculations for Au i–Au iii and exploration in the application of collisional-radiative theory to laboratory and neutron star merger plasmas. Mon. Not. R. Astron. Soc. 2021, 509, 4723–4735. [Google Scholar] [CrossRef]
- Pognan, Q.; Jerkstrand, A.; Grumer, J. On the validity of steady-state for nebular phase kilonovae. Mon. Not. R. Astron. Soc. 2022, 510, 3806–3837. [Google Scholar] [CrossRef]
- Kasen, D.; Metzger, B.; Barnes, J.; Quataert, E.; Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 2017, 551, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Fontes, C.J.; Fryer, C.L.; Hungerford, A.L.; Wollaeger, R.T.; Korobkin, O. A line-binned treatment of opacities for the spectra and light curves from neutron star mergers. Mon. Not. R. Astron. Soc. 2020, 493, 4143–4171. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Kato, D.; Gaigalas, G.; Kawaguchi, K. Systematic opacity calculations for kilonovae. Mon. Not. R. Astron. Soc. 2020, 496, 1369–1392. [Google Scholar] [CrossRef]
- Eastman, R.G.; Pinto, P.A. Spectrum Formation in Supernovae: Numerical Techniques. Astrophys. J. 1993, 412, 731. [Google Scholar] [CrossRef]
- Pinto, P.A.; Eastman, R.G. The Physics of Type Ia Supernova Light Curves. I. Analytic Results and Time Dependence. Astrophys. J. 2000, 530, 744–756. [Google Scholar] [CrossRef]
- Pinto, P.A.; Eastman, R.G. The Physics of Type Ia Supernova Light Curves. II. Opacity and Diffusion. Astrophys. J. 2000, 530, 757–776. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.F. The flexible atomic code. Can. J. Phys. 2008, 86, 675–689. [Google Scholar] [CrossRef]
- Stambulchik, E. cFAC—A Forked Version of FAC. 2020. Available online: https://github.com/fnevgeny/cfac (accessed on 20 December 2021).
- Kramida, A.; Ralchenko, Y.; Reader, J. No Title. NIST Atomic Spectra Database, Version 5.8; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. Available online: https://physics.nist.gov/asd (accessed on 9 April 2017).
- Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C.F.; Grant, I.P. New version: Grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2013, 184, 2197–2203. [Google Scholar] [CrossRef] [Green Version]
- Gaigalas, G.; Kato, D.; Rynkun, P.; Radžiūtė, L.; Tanaka, M.; Radžiūte, L.; Tanaka, M. Extended Calculations of Energy Levels and Transition Rates of Nd ii-iv Ions for Application to Neutron Star Mergers. Astrophys. J. Suppl. Ser. 2019, 240, 29. [Google Scholar] [CrossRef]
- Blaise, J.; Wyart, J.F. Energy Levels and Atomic Spectra of Actinides; Tables Internationales de Constantes: Paris, France, 1992; p. 479. [Google Scholar]
- Kozlov, M.G.; Porsev, S.G.; Safronova, M.S.; Tupitsyn, I.I. CI-MBPT: A package of programs for relativistic atomic calculations based on a method combining configuration interaction and many-body perturbation theory. Comput. Phys. Commun. 2015, 195, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Hakel, P.; Sherrill, M.E.; Mazevet, S.; Abdallah, J.; Colgan, J.; Kilcrease, D.P.; Magee, N.H.; Fontes, C.J.; Zhang, H.L. The new Los Alamos opacity code ATOMIC. J. Quant. Spectrosc. Radiat. Transf. 2006, 99, 265–271. [Google Scholar] [CrossRef]
- Savukov, I.; Safronova, U.I.; Safronova, M.S. Relativistic configuration interaction plus linearized-coupled-cluster calculations of U2+ energies, g factors, transition rates, and lifetimes. Phys. Rev. A 2015, 92, 052516. [Google Scholar] [CrossRef] [Green Version]
- Safronova, M.S.; Kozlov, M.G.; Johnson, W.R.; Jiang, D. Development of a configuration-interaction plus all-order method for atomic calculations. Phys. Rev. A 2009, 80, 012516. [Google Scholar] [CrossRef] [Green Version]
- Nahar, S. Database NORAD-Atomic-Data for Atomic Processes in Plasma. Atoms 2020, 8, 68. [Google Scholar] [CrossRef]
- Eissner, W. SUPERSTRUCTURE—An atomic code. J. Phys. IV Proc. 1991, 1, C1-3–C1-13. [Google Scholar] [CrossRef] [Green Version]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981; p. 731. [Google Scholar] [CrossRef]
Label | Configurations | All | ||
---|---|---|---|---|
Even | Odd | #Levels | #Lines | |
FAC (Calculation A) | , , , , , , | , , , | 3206 | 708, 077 |
FAC (Calculation B) | , , , , , | , , , | 2702 | 542, 264 |
GRAPS2K (Gaigalas et al.) | , , , , , | , , , | 1453 | 148, 759 |
NIST | 29 | - |
Label | Configurations | All | ||
---|---|---|---|---|
Even | Odd | #Levels | #Lines | |
FAC | , , , , , | , , , | 2702 | 542, 264 |
CI+LCC—Savukov et al. | , a | , a | 192 b | 3024 c |
Exp.—Blaise et al. | , , , | , | 123 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.F.; Sampaio, J.M.; Amaro, P.; Flörs, A.; Martínez-Pinedo, G.; Marques, J.P. Structure Calculations in Nd III and U III Relevant for Kilonovae Modelling. Atoms 2022, 10, 18. https://doi.org/10.3390/atoms10010018
Silva RF, Sampaio JM, Amaro P, Flörs A, Martínez-Pinedo G, Marques JP. Structure Calculations in Nd III and U III Relevant for Kilonovae Modelling. Atoms. 2022; 10(1):18. https://doi.org/10.3390/atoms10010018
Chicago/Turabian StyleSilva, Ricardo F., Jorge M. Sampaio, Pedro Amaro, Andreas Flörs, Gabriel Martínez-Pinedo, and José P. Marques. 2022. "Structure Calculations in Nd III and U III Relevant for Kilonovae Modelling" Atoms 10, no. 1: 18. https://doi.org/10.3390/atoms10010018
APA StyleSilva, R. F., Sampaio, J. M., Amaro, P., Flörs, A., Martínez-Pinedo, G., & Marques, J. P. (2022). Structure Calculations in Nd III and U III Relevant for Kilonovae Modelling. Atoms, 10(1), 18. https://doi.org/10.3390/atoms10010018