Impact of AGB Stars on the Chemical Evolution of Neutron-Capture Elements
Abstract
1. Introduction
2. Galactic Chemical Evolution
2.1. Analytical Chemical Models
2.2. Numerical Chemical Models
3. Early Results Based on Analytical Approach
4. First Detailed Numerical Models
5. New s-Process Yields
6. More Recent Numerical Models
7. The s-Processing in AGB Stars Revisited Adopting Magneto Hydrodynamics Mixing
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
1 | It is adopted the notation [A/B]≡ log(N/N) − log(N/N)), for elements A and B. |
2 | http://www.as.utexas.edu/~chris/moog.html, accessed on 10 February 2022. |
References
- Gallino, R.; Busso, M.; Picchio, G.; Raiteri, C.M.; Renzini, A. On the Role of Low-Mass Asymptotic Giant Branch Stars in Producing a Solar System Distribution of s-Process Isotopes. Astrophys. J. 1988, 334, L45. [Google Scholar] [CrossRef]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the S-Process. Astrophys. J. 1998, 497, 388–403. [Google Scholar] [CrossRef]
- Busso, M.; Lambert, D.L.; Beglio, L.; Gallino, R.; Raiteri, C.M.; Smith, V.V. Nucleosynthesis and Mixing on the Asymptotic Giant Branch. II. Carbon and Barium Stars in the Galactic Disk. Astrophys. J. 1995, 446, 775. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Lambert, D.L.; Travaglio, C.; Smith, V.V. Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances. Astrophys. J. 2001, 557, 802–821. [Google Scholar] [CrossRef]
- Tinsley, B.M. Evolution of the Stars and Gas in Galaxies. Fund. Cosmic Phys. 1980, 5, 287–388. [Google Scholar] [CrossRef]
- Truran, J.W. A new interpretation of the heavy element abundances in metal-deficient stars. Astron. Astrophys. 1981, 97, 391–393. [Google Scholar]
- Travaglio, C.; Galli, D.; Gallino, R.; Busso, M.; Ferrini, F.; Straniero, O. Galactic Chemical Evolution of Heavy Elements: From Barium to Europium. Astrophys. J. 1999, 521, 691–702. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Lawler, J.E.; Ivans, I.I.; Burles, S.; Beers, T.C.; Primas, F.; Hill, V.; Truran, J.W.; Fuller, G.M.; et al. The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis. Astrophys. J. 2003, 591, 936–953. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Gallino, R. Neutron-capture elements in the early galaxy. Annu. Rev. Astron. Astrophys. 2008, 46, 241–288. [Google Scholar] [CrossRef]
- Travaglio, C.; Gallino, R.; Arnone, E.; Cowan, J.; Jordan, F.; Sneden, C. Galactic Evolution of Sr, Y, And Zr: A Multiplicity of Nucleosynthetic Processes. Astrophys. J. 2004, 601, 864–884. [Google Scholar] [CrossRef]
- Montes, F.; Beers, T.C.; Cowan, J.; Elliot, T.; Farouqi, K.; Gallino, R.; Heil, M.; Kratz, K.L.; Pfeiffer, B.; Pignatari, M. Nucleosynthesis in the Early Galaxy. Astrophys. J. 2007, 671, 1685–1695. [Google Scholar] [CrossRef]
- Raiteri, C.M.; Gallino, R.; Busso, M. S-Processing in Massive Stars as a Function of Metallicity and Interpretation of Observational Trends. Astrophys. J. 1992, 387, 263. [Google Scholar] [CrossRef]
- Arcones, A.; Montes, F. Production of Light-element Primary Process Nuclei in Neutrino-driven Winds. Astrophys. J. 2011, 731, 5. [Google Scholar] [CrossRef]
- Frischknecht, U.; Hirschi, R.; Pignatari, M.; Maeder, A.; Meynet, G.; Chiappini, C.; Thielemann, F.K.; Rauscher, T.; Georgy, C.; Ekström, S. s-process production in rotating massive stars at solar and low metallicities. Mon. Not. R. Astron. Soc. 2016, 456, 1803–1825. [Google Scholar] [CrossRef]
- Limongi, M.; Chieffi, A. Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. Ser. 2018, 237, 13. [Google Scholar] [CrossRef]
- Gratton, R.G.; Sneden, C. Abundances of neutron-capture elements in metal-poor stars. Astron. Astrophys. 1994, 287, 927–946. [Google Scholar]
- Woolf, V.M.; Tomkin, J.; Lambert, D.L. The r-Process Element Europium in Galactic Disk F and G Dwarf Stars. Astrophys. J. 1995, 453, 660. [Google Scholar] [CrossRef]
- Francois, P. Abundance of barium in metal poor stars. Astron. Astrophys. 1996, 313, 229–233. [Google Scholar]
- McWilliam, A.; Preston, G.W.; Sneden, C.; Searle, L. Spectroscopic Analysis of 33 of the Most Metal Poor Stars. II. Astron. J. 1995, 109, 2757. [Google Scholar] [CrossRef]
- McWilliam, A. Barium Abundances in Extremely Metal-poor Stars. Astron. J. 1998, 115, 1640–1647. [Google Scholar] [CrossRef]
- Norris, J.E.; Ryan, S.G.; Beers, T.C. Extremely Metal-poor Stars. The Carbon-rich, Neutron Capture Element–poor Object CS 22957-027. Astrophys. J. 1997, 489, L169. [Google Scholar] [CrossRef]
- Jehin, E.; Magain, P.; Neuforge, C.; Noels, A.; Parmentier, G.; Thoul, A.A. Abundance correlations in mildly metal-poor stars. Astron. Astrophys. 1999, 341, 241–255. [Google Scholar]
- Mashonkina, L.; Gehren, T.; Bikmaev, I. Barium abundances in cool dwarf stars as a constraint to s- and r-process nucleosynthesis. Astron. Astrophys. 1999, 343, 519–530. [Google Scholar]
- Cescutti, G.; François, P.; Matteucci, F.; Cayrel, R.; Spite, M. The chemical evolution of barium and europium in the Milky Way. Astron. Astrophys. 2006, 448, 557–569. [Google Scholar] [CrossRef]
- Chiappini, C.; Matteucci, F.; Gratton, R. The Chemical Evolution of the Galaxy: The Two-Infall Model. Astrophys. J. 1997, 477, 765–780. [Google Scholar] [CrossRef]
- Cayrel, R.; Depagne, E.; Spite, M.; Hill, V.; Spite, F.; François, P.; Plez, B.; Beers, T.; Primas, F.; Andersen, J.; et al. First stars V-Abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 2004, 416, 1117–1138. [Google Scholar] [CrossRef]
- François, P.; Depagne, E.; Hill, V.; Spite, M.; Spite, F.; Plez, B.; Beers, T.C.; Andersen, J.; James, G.; Barbuy, B.; et al. First stars. VIII. Enrichment of the neutron-capture elements in the early Galaxy. Astron. Astrophys. 2007, 476, 935–950. [Google Scholar] [CrossRef]
- Burris, D.L.; Pilachowski, C.A.; Armandroff, T.E.; Sneden, C.; Cowan, J.J.; Roe, H. Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants. Astrophys. J. 2000, 544, 302–319. [Google Scholar] [CrossRef]
- Fulbright, J.P. Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis. Astron. J. 2000, 120, 1841–1852. [Google Scholar] [CrossRef]
- Koch, A.; Edvardsson, B. Europium abundances in F and G disk dwarfs. Astron. Astrophys. 2002, 381, 500–506. [Google Scholar] [CrossRef][Green Version]
- Honda, S.; Aoki, W.; Kajino, T.; Ando, H.; Beers, T.C.; Izumiura, H.; Sadakane, K.; Takada-Hidai, M. Spectroscopic Studies of Extremely Metal-Poor Stars with the Subaru High Dispersion Spectrograph. II. The r-Process Elements, Including Thorium. Astrophys. J. 2004, 607, 474–498. [Google Scholar] [CrossRef]
- Mashonkina, L.; Gehren, T. Barium and europium abundances in cool dwarf stars and nucleosynthesis of heavy elements. Astron. Astrophys. 2000, 364, 249–264. [Google Scholar]
- Mashonkina, L.; Gehren, T. Heavy element abundances in cool dwarf stars: An implication for the evolution of the Galaxy. Astron. Astrophys. 2001, 376, 232–247. [Google Scholar] [CrossRef]
- Cescutti, G.; Matteucci, F.; François, P.; Chiappini, C. Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium. Astron. Astrophys. 2007, 462, 943–951. [Google Scholar] [CrossRef]
- D’Orazi, V.; Magrini, L.; Randich, S.; Galli, D.; Busso, M.; Sestito, P. Enhanced Production of Barium in Low-Mass Stars: Evidence from Open Clusters. Astrophys. J. 2009, 693, L31–L34. [Google Scholar] [CrossRef]
- Charbonnel, C. Clues for non-standard mixing on the red giant branch from 12C/13C and 12C/14N ratios in evolved stars. Astron. Astrophys. 1994, 282, 811–820. [Google Scholar]
- Busso, M.; Wasserburg, G.J.; Nollett, K.M.; Calandra, A. Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms? Astrophys. J. 2007, 671, 802–810. [Google Scholar] [CrossRef]
- Bensby, T.; Feltzing, S.; Lundström, I.; Ilyin, I. α-, r-, and s-process element trends in the Galactic thin and thick disks. Astron. Astrophys. 2005, 433, 185–203. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Sheminova, V.; Spina, L.; Carraro, G.; Gratton, R.; Magrini, L.; Randich, S.; Lugaro, M.; Pignatari, M.; et al. The Gaia-ESO Survey: A new approach to chemically characterising young open clusters. II. Abundances of the neutron-capture elements Cu, Sr, Y, Zr, Ba, La, and Ce. Astron. Astrophys. 2021, 653, A67. [Google Scholar] [CrossRef]
- Maiorca, E.; Randich, S.; Busso, M.; Magrini, L.; Palmerini, S. s-processing in the Galactic Disk. I. Super-solar Abundances of Y, Zr, La, and Ce in Young Open Clusters. Astrophys. J. 2011, 736, 120. [Google Scholar] [CrossRef]
- Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 1973, 184, 839. [Google Scholar] [CrossRef]
- Rizzuti, F.; Cescutti, G.; Matteucci, F.; Chieffi, A.; Hirschi, R.; Limongi, M. The contribution from rotating massive stars to the enrichment in Sr and Ba of the Milky Way. Mon. Not. R. Astron. Soc. 2019, 489, 5244–5255. [Google Scholar] [CrossRef]
- Cristallo, S.; Straniero, O.; Gallino, R.; Piersanti, L.; Domínguez, I.; Lederer, M.T. Evolution, Nucleosynthesis, and Yields of Low-Mass Asymptotic Giant Branch Stars at Different Metallicities. Astrophys. J. 2009, 696, 797–820. [Google Scholar] [CrossRef]
- Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database. Astrophys. J. Suppl. Ser. 2011, 197, 17. [Google Scholar] [CrossRef]
- Thielemann, F.K.; Arcones, A.; Käppeli, R.; Liebendörfer, M.; Rauscher, T.; Winteler, C.; Fröhlich, C.; Dillmann, I.; Fischer, T.; Martinez-Pinedo, G.; et al. What are the astrophysical sites for the r-process and the production of heavy elements? Prog. Part. Nucl. Phys. 2011, 66, 346–353. [Google Scholar] [CrossRef]
- Grisoni, V.; Cescutti, G.; Matteucci, F.; Forsberg, R.; Jönsson, H.; Ryde, N. Modelling the chemical evolution of Zr, La, Ce, and Eu in the Galactic discs and bulge. Mon. Not. R. Astron. Soc. 2020, 492, 2828–2834. [Google Scholar] [CrossRef]
- Grisoni, V.; Spitoni, E.; Matteucci, F.; Recio-Blanco, A.; de Laverny, P.; Hayden, M.; Mikolaitis, Ŝ.; Worley, C.C. The AMBRE project: Chemical evolution models for the Milky Way thick and thin discs. Mon. Not. R. Astron. Soc. 2017, 472, 3637–3647. [Google Scholar] [CrossRef]
- Matteucci, F.; Grisoni, V.; Spitoni, E.; Zulianello, A.; Rojas-Arriagada, A.; Schultheis, M.; Ryde, N. The origin of stellar populations in the Galactic bulge from chemical abundances. Mon. Not. R. Astron. Soc. 2019, 487, 5363–5371. [Google Scholar] [CrossRef]
- Prantzos, N.; Abia, C.; Cristallo, S.; Limongi, M.; Chieffi, A. Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r-process components. Mon. Not. R. Astron. Soc. 2020, 491, 1832–1850. [Google Scholar] [CrossRef]
- Busso, M.; Vescovi, D.; Palmerini, S.; Cristallo, S.; Antonuccio-Delogu, V. s-processing in AGB Stars Revisited. III. Neutron Captures from MHD Mixing at Different Metallicities and Observational Constraints. Astrophys. J. 2021, 908, 55. [Google Scholar] [CrossRef]
- Liu, N.; Gallino, R.; Cristallo, S.; Bisterzo, S.; Davis, A.M.; Trappitsch, R.; Nittler, L.R. New Constraints on the Major Neutron Source in Low-mass AGB Stars. Astrophys. J. 2018, 865, 112. [Google Scholar] [CrossRef]
- Magrini, L.; Vescovi, D.; Casali, G.; Cristallo, S.; Viscasillas Vázquez, C.; Cescutti, G.; Spina, L.; Van Der Swaelmen, M.; Randich, S. Magnetic-buoyancy-induced mixing in AGB stars: A theoretical explanation of the non-universal relation of [Y/Mg] to age. Astron. Astrophys. 2021, 646, L2. [Google Scholar] [CrossRef]
- Perego, A.; Thielemann, F.K.; Cescutti, G. r-Process Nucleosynthesis from Compact Binary Mergers. In Handbook of Gravitational Wave Astronomy; Bambi, C., Katsanevas, S., Kokkotas, K.D., Eds.; Springer: Singapore, 2020; pp. 1–56. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cescutti, G.; Matteucci, F. Impact of AGB Stars on the Chemical Evolution of Neutron-Capture Elements. Universe 2022, 8, 173. https://doi.org/10.3390/universe8030173
Cescutti G, Matteucci F. Impact of AGB Stars on the Chemical Evolution of Neutron-Capture Elements. Universe. 2022; 8(3):173. https://doi.org/10.3390/universe8030173
Chicago/Turabian StyleCescutti, Gabriele, and Francesca Matteucci. 2022. "Impact of AGB Stars on the Chemical Evolution of Neutron-Capture Elements" Universe 8, no. 3: 173. https://doi.org/10.3390/universe8030173
APA StyleCescutti, G., & Matteucci, F. (2022). Impact of AGB Stars on the Chemical Evolution of Neutron-Capture Elements. Universe, 8(3), 173. https://doi.org/10.3390/universe8030173