# The Teleparallel Equivalent of General Relativity and the Gravitational Centre of Mass

## Abstract

**:**

## 1. Introduction

**Notation**:

## 2. A Review of the Lagrangian and Hamiltonian Formulations of the TEGR

## 3. The Centre of Mass Moment

#### 3.1. The Space-Time of a Massive Point Particle

#### 3.2. The Schwarzschild-de Sitter Space-Time

#### 3.3. Dark Matter Simulated by Non-Local Gravity

#### 3.4. Arbitrary Space-Time with Axial Symmetry

## 4. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Arnowitt, R.; Deser, S.; Misner, C.W. Gravitation: An Introduction to Current Research; Witten, L., Ed.; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Dixon, W.G. Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum. Proc. R. Soc. Lond. A
**1970**, 314, 499–527. [Google Scholar] [CrossRef] - Dixon, W.G. Dynamics of Extended Bodies in General Relativity. II. Moments of the Charge-Current Vector. Proc. R. Soc. Lond. A
**1970**, 319, 509–547. [Google Scholar] [CrossRef] - Dixon, W.G. The definition of multipole moments for extended bodies. Gen. Relativ. Gravit.
**1973**, 4, 199–209. [Google Scholar] [CrossRef] - Ehlers, J.; Rudolph, E. Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity. Gen. Relativ. Gravit.
**1977**, 8, 197–217. [Google Scholar] [CrossRef] - Regge, T.; Teitelboim, C. Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys.
**1974**, 88, 286–318. [Google Scholar] [CrossRef] - Hanson, A.; Regge, T.; Teitelboim, C. Constrained hamiltonian systems; Accademia Nazionale dei Lincei: Roma, Italy, 1976. [Google Scholar]
- Beign, R.; ÓMurchadha, N. The Poincaré group as the symmetry group of canonical general relativity. Ann. Phys.
**1987**, 174, 463–498. [Google Scholar] [CrossRef] - Baskaran, D.; Lau, S.R.; Petrov, A.N. Center of mass integral in canonical general relativity. Ann. Phys.
**2003**, 307, 90–131. [Google Scholar] [CrossRef] - Nester, J.M.; Ho, F.H.; Chen, C.M. Quasilocal Center-of-Mass for Teleparallel Gravity. 2004; arXiv:gr-qc/0403101. [Google Scholar]
- Nester, J.M.; Meng, F.F.; Chen, C.M. Quasilocal Center-of-Mass. J. Korean Phys. Soc.
**2004**, 45, S22–S25. [Google Scholar] - Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys.
**2013**, 525, 339–357. [Google Scholar] [CrossRef] - Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Blagojevic, M.; Hehl, F.W. Gauge Theories of Gravitation; Imperial College: London, UK, 2013. [Google Scholar]
- Einstein, A. Riemannsche Geometrie unter Aufrechterhaltung des Begriffes des Fernparallelismus (Riemannian Geometry with Maintaining the Notion of Distant Parallelism). In Sitzungsberichte der Preussischen Akademie der Wissenshcaften; Verlag der Akademie der Wissenschaften: Berlin, Germany, 1928; pp. 217–221. [Google Scholar]
- Einstein, A. Unified Field Theory based on Riemannian Metrics and Distant Parallelism. Math. Ann.
**1930**, 102, 685–697. [Google Scholar] [CrossRef] - Cho, Y.M. Einstein Lagrangian as the translational Yang-Mills Lagrangian. Phys. Rev. D
**1976**, 14, 2521–2525. [Google Scholar] [CrossRef] - Cho, Y.M. Gauge theory of Poincaré symmetry. Phys. Revs. D
**1976**, 14, 3335–3341. [Google Scholar] [CrossRef] - Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D
**1979**, 19, 3524–3554. [Google Scholar] [CrossRef] - Hayashi, K.; Shirafuji, T. Addendum to “New general relativity”. Phys. Rev. D
**1981**, 24, 3312–3315. [Google Scholar] [CrossRef] - Hehl, F.W. Four lectures on poincaré Gauge field theory. In Cosmology and Gravitation: Spin, Torsion, Rotation and Supergravity; Bergmann, P.G., de Sabbata, V., Eds.; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
- Nitsch, J. The macroscopic limit of the poincaré gauge field theory on gravitation. In Cosmology and Gravitation: Spin, Torsion, Rotation and Supergravity; Bergmann, P.G., de Sabbata, V., Eds.; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
- Schweizer, M.; Straumann, N.; Wipf, A. Post-Newtonian Generation of Gravitational Waves in a Theory with Torsion. Gen. Relativ. Gravit.
**1980**, 12, 951–961. [Google Scholar] [CrossRef] - Nester, J.M. Positive energy via the teleparallel Hamiltonian. Int. J. Mod. Phys. A
**1989**, 4, 1755–1772. [Google Scholar] [CrossRef] - Wiesendanger, C. Translational gauge invariance and classical gravitodynamics. Class. Quantum Gravity
**1995**, 12, 585–603. [Google Scholar] [CrossRef] - Cai, Y.-F.; Capozziello, S.; de Laurentis, M.; Saridakis, E.N. f(T) Teleparallel Gravity and Cosmology. 2015; arXiv:1511.07586. [Google Scholar]
- Maluf, J.W.; da Rocha-Neto, J.F. Hamiltonian formulation of general relativity in the teleparallel geometry. Phys. Rev D
**2001**, 64, 084014. [Google Scholar] [CrossRef] - Da Rocha-Neto, J.F.; Maluf, J.W.; Ulhoa, S.C. Hamiltonian formulation of unimodular gravity in the teleparallel geometry. Phys. Rev. D
**2010**, 82, 124035. [Google Scholar] [CrossRef] - Maluf, J.W.; Ulhoa, S.C.; Faria, F.F.; da Rocha-Neto, J.F. The angular momentum of the gravitational field and the Poincaré group. Class. Quantum Gravity
**2006**, 23, 6245–6256. [Google Scholar] [CrossRef] - Maluf, J.W. Hamiltonian formulation of the teleparallel description of general relativity. J. Math. Phys.
**1994**, 35, 335–343. [Google Scholar] [CrossRef] - Maluf, J.W. The gravitational energy-momentum tensor and the gravitational pressure. Ann. Phys. (Berlin)
**2005**, 14, 723–732. [Google Scholar] [CrossRef] - Da Rocha-Neto, J.F.; Maluf, J.W. The angular momentum of plane-fronted gravitational waves in the teleparallel equivalent of general relativity. Gen. Relativ. Gravit.
**2014**, 46, 1667. [Google Scholar] [CrossRef] - Mashhoon, B.; Muench, U. Length measurement in accelerated systems. Ann. Phys. (Berlin)
**2002**, 11, 532–547. [Google Scholar] [CrossRef] - Mashhoon, B. Vacuum electrodynamics of accelerated systems: Nonlocal Maxwell’s equations. Ann. Phys. (Berlin)
**2003**, 12, 586–598. [Google Scholar] [CrossRef] - Maluf, J.W.; Faria, F.F.; Ulhoa, S.C. On reference frames in spacetime and gravitational energy in freely falling frames. Class. Quantum Gravity
**2007**, 24, 2743–2754. [Google Scholar] [CrossRef] - Maluf, J.W.; Faria, F.F. On the construction of Fermi-Walker transported frames. Ann. Phys. (Berlin)
**2008**, 17, 326–335. [Google Scholar] [CrossRef] - Maluf, J.W. Repulsive gravity near naked singularities and point massive particles. Gen. Relativ. Gravit.
**2014**, 46, 1734. [Google Scholar] [CrossRef] - Parker, E.P. Distributional geometry. J. Math. Phys.
**1979**, 20, 1423–1426. [Google Scholar] [CrossRef] - Katanaev, M.O. Point massive particle in General Relativity. Gen. Relativ. Gravit.
**2013**, 45, 1861–1875. [Google Scholar] [CrossRef] - Ulhoa, S.C.; da Rocha-Neto, J.F.; Maluf, J.W. The gravitational energy problem for cosmological models in teleparallel gravity. Int. J. Mod. Phys. D
**2010**, 19, 1925–1935. [Google Scholar] [CrossRef] - Hehl, F.W.; Mashhoon, B. Formal framework for a nonlocal generalization of Einstein’s theory of gravitation. Phys. Rev. D
**2009**, 79, 064028. [Google Scholar] [CrossRef] - Blome, H.J.; Chicone, C.; Hehl, F.W.; Mashhoon, B. Nonlocal modification of Newtonian gravity. Phys. Rev. D
**2010**, 81, 065020. [Google Scholar] [CrossRef] - Hehl, F.W.; Mashhoon, B. Nonlocal gravity simulates dark matter. Phys. Lett. B
**2009**, 673, 279–282. [Google Scholar] [CrossRef]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Maluf, J.W.
The Teleparallel Equivalent of General Relativity and the Gravitational Centre of Mass. *Universe* **2016**, *2*, 19.
https://doi.org/10.3390/universe2030019

**AMA Style**

Maluf JW.
The Teleparallel Equivalent of General Relativity and the Gravitational Centre of Mass. *Universe*. 2016; 2(3):19.
https://doi.org/10.3390/universe2030019

**Chicago/Turabian Style**

Maluf, José Wadih.
2016. "The Teleparallel Equivalent of General Relativity and the Gravitational Centre of Mass" *Universe* 2, no. 3: 19.
https://doi.org/10.3390/universe2030019