A Note on the Existence of Equal-Time Correlators
Abstract
1. Introduction
Notation
2. General Arguments
2.1. Discussion of the 2-Point Function
2.2. Interpretation in a CFT
2.3. Time Smearing
2.4. Renormalized Higher Point Functions
Argument:
2.5. A Possible Solution
3. Examples
3.1. Single Scalar, Model

3.2. Composite Operator In a Free Scalar Theory
3.3. Light Scalar, Heavy Scalar
3.3.1. Leading Terms
3.3.2. Resummed Series
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Sunset Diagram

| 1 | Free fields have a delta function spectral density, in contrast with Equation (17), so they evade the bound. Indeed free fermions have while allowing equal-time correlators. |
| 2 | See for example [70], pp. 25, 28, for a brief discussion of test functions. |
| 3 | |
| 4 | This discussion neglects possible domain subtleties associated with non-compact operators, effectively identifying a state and an arbitrarily close approximation of it. |
| 5 | See [73] for the same computation together with the 2-point function of the stress energy tensor. |
| 6 | This model was chosen to avoid the appearence of logarithms in Equation (62), which makes the subsequent discussion simpler while illustrating the main point. |
References
- Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532–535. [Google Scholar]
- Flauger, R.; Gorbenko, V.; Joyce, A.; McAllister, L.; Shiu, G.; Silverstein, E. Snowmass White Paper: Cosmology at the Theory Frontier. arXiv 2022. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Benincasa, P.; Postnikov, A. Cosmological Polytopes and the Wavefunction of the Universe. arXiv 2017. [Google Scholar] [CrossRef]
- Bzowski, A.; McFadden, P.; Skenderis, K. Conformal correlators as simplex integrals in momentum space. J. High Energy Phys. 2021, 2021, 192. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Maldacena, J. Cosmological Collider Physics. arXiv 2015. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Baumann, D.; Lee, H.; Pimentel, G.L. The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities. J. High Energy Phys. 2020, 2020, 105. [Google Scholar] [CrossRef]
- Meltzer, D. The inflationary wavefunction from analyticity and factorization. J. Cosmol. Astropart. Phys. 2021, 2021, 18. [Google Scholar] [CrossRef]
- Sleight, C. A Mellin Space Approach to Cosmological Correlators. J. High Energy Phys. 2020, 2020, 90. [Google Scholar] [CrossRef]
- Goodhew, H.; Jazayeri, S.; Pajer, E. The Cosmological Optical Theorem. J. Cosmol. Astropart. Phys. 2021, 2021, 21. [Google Scholar] [CrossRef]
- Benincasa, P.; McLeod, A.J.; Vergu, C. Steinmann Relations and the Wavefunction of the Universe. Phys. Rev. D 2020, 102, 125004. [Google Scholar] [CrossRef]
- Jazayeri, S.; Pajer, E.; Stefanyszyn, D. From locality and unitarity to cosmological correlators. J. High Energy Phys. 2021, 2021, 65. [Google Scholar] [CrossRef]
- Lee, M.H.G. From amplitudes to analytic wavefunctions. J. High Energy Phys. 2024, 2024, 58. [Google Scholar] [CrossRef]
- Farrow, J.A.; Lipstein, A.E.; McFadden, P. Double copy structure of CFT correlators. J. High Energy Phys. 2019, 2019, 130. [Google Scholar] [CrossRef]
- Armstrong, C.; Lipstein, A.E.; Mei, J. Color/kinematics duality in AdS4. J. High Energy Phys. 2021, 2021, 194. [Google Scholar] [CrossRef]
- Albayrak, S.; Kharel, S.; Meltzer, D. On duality of color and kinematics in (A)dS momentum space. J. High Energy Phys. 2021, 2021, 249. [Google Scholar] [CrossRef]
- Jain, S.; John, R.R.; Mehta, A.; Nizami, A.A.; Suresh, A. Double copy structure of parity-violating CFT correlators. J. High Energy Phys. 2021, 2021, 33. [Google Scholar] [CrossRef]
- Herderschee, A.; Roiban, R.; Teng, F. On the differential representation and color-kinematics duality of AdS boundary correlators. J. High Energy Phys. 2022, 2022, 26. [Google Scholar] [CrossRef]
- Cheung, C.; Parra-Martinez, J.; Sivaramakrishnan, A. On-shell correlators and color-kinematics duality in curved symmetric spacetimes. J. High Energy Phys. 2022, 2022, 27. [Google Scholar] [CrossRef]
- Armstrong, C.; Goodhew, H.; Lipstein, A.; Mei, J. Graviton trispectrum from gluons. J. High Energy Phys. 2023, 2023, 206. [Google Scholar] [CrossRef]
- Mei, J. Amplitude Bootstrap in (Anti) de Sitter Space And The Four-Point Graviton from Double Copy. arXiv 2023. [Google Scholar] [CrossRef]
- Gomez, H.; Jusinskas, R.L.; Lipstein, A. Cosmological Scattering Equations. Phys. Rev. Lett. 2021, 127, 251604. [Google Scholar] [CrossRef]
- Sleight, C.; Taronna, M. Bootstrapping Inflationary Correlators in Mellin Space. J. High Energy Phys. 2020, 2020, 98. [Google Scholar] [CrossRef]
- Bzowski, A.; McFadden, P.; Skenderis, K. Holography for inflation using conformal perturbation theory. J. High Energy Phys. 2013, 2013, 47. [Google Scholar] [CrossRef]
- Bzowski, A.; McFadden, P.; Skenderis, K. Implications of conformal invariance in momentum space. J. High Energy Phys. 2014, 2014, 111. [Google Scholar] [CrossRef]
- Bzowski, A.; McFadden, P.; Skenderis, K. Renormalised 3-point functions of stress tensors and conserved currents in CFT. J. High Energy Phys. 2018, 2018, 153. [Google Scholar] [CrossRef]
- Bzowski, A.; McFadden, P.; Skenderis, K. Renormalised CFT 3-point functions of scalars, currents and stress tensors. J. High Energy Phys. 2018, 2018, 159. [Google Scholar] [CrossRef]
- Heckelbacher, T.; Sachs, I. Loops in dS/CFT. J. High Energy Phys. 2021, 2021, 151. [Google Scholar] [CrossRef]
- Heckelbacher, T.; Sachs, I.; Skvortsov, E.; Vanhove, P. Analytical evaluation of cosmological correlation functions. J. High Energy Phys. 2022, 2022, 139. [Google Scholar] [CrossRef]
- Cacciatori, S.L.; Epstein, H.; Moschella, U. Loops in de Sitter space. J. High Energy Phys. 2024, 2024, 182. [Google Scholar] [CrossRef]
- Bhowmick, S.; Ghosh, D.; Ullah, F. Bispectrum at 1-loop in the Effective Field Theory of Inflation. arXiv 2024. [Google Scholar] [CrossRef]
- Goodhew, H.; Thavanesan, A.; Wall, A.C. The Cosmological CPT Theorem. arXiv 2024. [Google Scholar] [CrossRef]
- Werth, D.; Pinol, L.; Renaux-Petel, S. Cosmological Flow of Primordial Correlators. Phys. Rev. Lett. 2024, 133, 141002. [Google Scholar] [CrossRef]
- Pinol, L.; Renaux-Petel, S.; Werth, D. The Cosmological Flow: A Systematic Approach to Primordial Correlators. arXiv 2023. [Google Scholar] [CrossRef]
- Werth, D. Spectral Representation of Cosmological Correlators. arXiv 2024. [Google Scholar] [CrossRef]
- Maldacena, J.M. Non-Gaussian features of primordial fluctuations in single field inflationary models. J. High Energy Phys. 2003, 2003, 13. [Google Scholar] [CrossRef]
- Weinberg, S. Quantum contributions to cosmological correlations. Phys. Rev. D 2005, 72, 43514. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hawking, S.W. Wave Function of the Universe. Phys. Rev. D 1983, 28, 2960–2975. [Google Scholar] [CrossRef]
- Céspedes, S.; Davis, A.C.; Melville, S. On the time evolution of cosmological correlators. J. High Energy Phys. 2021, 2021, 12. [Google Scholar] [CrossRef]
- Bonifacio, J.; Pajer, E.; Wang, D.G. From amplitudes to contact cosmological correlators. J. High Energy Phys. 2021, 2021, 1. [Google Scholar] [CrossRef]
- Bonifacio, J.; Goodhew, H.; Joyce, A.; Pajer, E.; Stefanyszyn, D. The graviton four-point function in de Sitter space. J. High Energy Phys. 2023, 2023, 212. [Google Scholar] [CrossRef]
- Goodhew, H.; Jazayeri, S.; Lee, M.H.G.; Pajer, E. Cutting cosmological correlators. J. Cosmol. Astropart. Phys. 2021, 2021, 3. [Google Scholar] [CrossRef]
- Hillman, A.; Pajer, E. A differential representation of cosmological wavefunctions. J. High Energy Phys. 2022, 2022, 12. [Google Scholar] [CrossRef]
- Melville, S.; Pajer, E. Cosmological Cutting Rules. J. High Energy Phys. 2021, 2021, 249. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Xianyu, Z.Z. Schwinger-Keldysh Diagrammatics for Primordial Perturbations. J. Cosmol. Astropart. Phys. 2017, 2017, 6. [Google Scholar] [CrossRef]
- Chowdhury, C.; Lipstein, A.; Mei, J.; Sachs, I.; Vanhove, P. The Subtle Simplicity of Cosmological Correlators. arXiv 2023. [Google Scholar] [CrossRef]
- Beneke, M.; Hager, P.; Sanfilippo, A.F. Cosmological correlators in massless ϕ4-theory and the method of regions. J. High Energy Phys. 2024, 2024, 6. [Google Scholar] [CrossRef]
- Donath, Y.; Pajer, E. The in-out formalism for in-in correlators. J. High Energy Phys. 2024, 2024, 64. [Google Scholar] [CrossRef]
- Baumann, D.; Chen, W.M.; Duaso Pueyo, C.; Joyce, A.; Lee, H.; Pimentel, G.L. Linking the singularities of cosmological correlators. J. High Energy Phys. 2022, 2022, 10. [Google Scholar] [CrossRef]
- Bros, J.; Moschella, U.; Gazeau, J.P. Quantum field theory in the de Sitter universe. Phys. Rev. Lett. 1994, 73, 1746–1749. [Google Scholar] [CrossRef]
- Loparco, M.; Penedones, J.; Salehi Vaziri, K.; Sun, Z. The Källén-Lehmann representation in de Sitter spacetime. J. High Energy Phys. 2023, 2023, 159. [Google Scholar] [CrossRef]
- Bros, J.; Moschella, U. Two point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 1996, 8, 327–392. [Google Scholar] [CrossRef]
- Moschella, U. The Spectral Condition, Plane Waves, and Harmonic Analysis in de Sitter and Anti-de Sitter Quantum Field Theories. Universe 2024, 10, 199. [Google Scholar] [CrossRef]
- Senatore, L.; Zaldarriaga, M. On Loops in Inflation. J. High Energy Phys. 2010, 2010, 8. [Google Scholar] [CrossRef]
- Negro, A.; Patil, S.P. An Étude on the regularization and renormalization of divergences in primordial observables. Riv. Nuovo Cim. 2024, 47, 179–228. [Google Scholar] [CrossRef]
- Negro, A.; Patil, S.P. Hadamard Regularization of the Graviton Stress Tensor. arXiv 2024. [Google Scholar] [CrossRef]
- Seery, D. Infrared effects in inflationary correlation functions. Class. Quant. Grav. 2010, 27, 124005. [Google Scholar] [CrossRef]
- Bros, J.; Epstein, H.; Moschella, U. Particle decays and stability on the de Sitter universe. Ann. Henri Poincare 2010, 11, 611–658. [Google Scholar] [CrossRef]
- Burgess, C.P.; Holman, R.; Leblond, L.; Shandera, S. Breakdown of Semiclassical Methods in de Sitter Space. J. Cosmol. Astropart. Phys. 2010, 2010, 17. [Google Scholar] [CrossRef]
- Giddings, S.B.; Sloth, M.S. Semiclassical relations and IR effects in de Sitter and slow-roll space-times. J. Cosmol. Astropart. Phys. 2011, 2011, 23. [Google Scholar] [CrossRef]
- Senatore, L.; Zaldarriaga, M. On Loops in Inflation II: IR Effects in Single Clock Inflation. J. High Energy Phys. 2013, 2013, 109. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Moschella, U.; Pavlenko, K.E.; Popov, F.K. Infrared dynamics of massive scalars from the complementary series in de Sitter space. Phys. Rev. D 2017, 96, 25002. [Google Scholar] [CrossRef]
- Céspedes, S.; Davis, A.C.; Wang, D.G. On the IR divergences in de Sitter space: Loops, resummation and the semi-classical wavefunction. J. High Energy Phys. 2024, 2024, 4. [Google Scholar] [CrossRef]
- Gorbenko, V.; Senatore, L. λϕ4 in dS. arXiv 2019. [Google Scholar] [CrossRef]
- Mirbabayi, M. Infrared dynamics of a light scalar field in de Sitter. J. Cosmol. Astropart. Phys. 2020, 2020, 6. [Google Scholar] [CrossRef]
- Cohen, T.; Green, D. Soft de Sitter Effective Theory. J. High Energy Phys. 2020, 2020, 41. [Google Scholar] [CrossRef]
- Wang, D.G.; Pimentel, G.L.; Achúcarro, A. Bootstrapping multi-field inflation: Non-Gaussianities from light scalars revisited. J. Cosmol. Astropart. Phys. 2023, 43. [Google Scholar] [CrossRef]
- Streater, R.F.; Wightman, A.S. PCT, Spin and Statistics, and All That; Princeton University Press: Princeton, NJ, USA, 1989. [Google Scholar]
- Strocchi, F. An Introduction to Non-Perturbative Foundations of Quantum Field Theory; Oxford University Press: Oxford, UK, 2013; Volume 158. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields. Vol. 1: Foundations; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Gillioz, M. Conformal Field Theory for Particle Physicists; SpringerBriefs in Physics; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Mack, G. All unitary ray representations of the conformal group SU(2,2) with positive energy. Commun. Math. Phys. 1977, 55, 1. [Google Scholar] [CrossRef]
- Wightman, A.S. Progress in the foundations of quantum field theory. In Proceedings of the 1967 International Conference on Particles and Fields; Princeton University: Princeton, NJ, USA, 1967. [Google Scholar]
- Yazdi, Y.K. Entanglement Entropy and Causal Set Theory. In Handbook of Quantum Gravity; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Schwinger, J.S. Field theory commutators. Phys. Rev. Lett. 1959, 3, 296–297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bucciotti, B. A Note on the Existence of Equal-Time Correlators. Universe 2026, 12, 35. https://doi.org/10.3390/universe12020035
Bucciotti B. A Note on the Existence of Equal-Time Correlators. Universe. 2026; 12(2):35. https://doi.org/10.3390/universe12020035
Chicago/Turabian StyleBucciotti, Bruno. 2026. "A Note on the Existence of Equal-Time Correlators" Universe 12, no. 2: 35. https://doi.org/10.3390/universe12020035
APA StyleBucciotti, B. (2026). A Note on the Existence of Equal-Time Correlators. Universe, 12(2), 35. https://doi.org/10.3390/universe12020035

