Exploring the Role of Vector Potential and Plasma-β in Jet Formation from Magnetized Accretion Flows
Abstract
1. Introduction
2. Numerical Setup
3. Results
3.1. Spatial Structure of the Accretion Flow
3.2. Time Evolution of Accretion and Magnetic Flux
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKinney, J.C.; Tchekhovskoy, A.; Blandford, R.D. Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes. Science 2013, 339, 49. [Google Scholar] [CrossRef] [PubMed]
- Bardeen, J.M.; Petterson, J.A. The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes. Astrophys. J. Lett. 1975, 195, L65. [Google Scholar] [CrossRef]
- Lodato, G.; Pringle, J.E. The evolution of misaligned accretion discs and spinning black holes. Mon. Not. R. Astron. Soc. 2006, 368, 1196–1208. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. Lett. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- Chatterjee, K.; Narayan, R. Flux Eruption Events Drive Angular Momentum Transport in Magnetically Arrested Accretion Flows. Astrophys. J. 2022, 941, 30. [Google Scholar] [CrossRef]
- Salas, L.D.S.; Musoke, G.; Chatterjee, K.; Markoff, S.B.; Porth, O.; Liska, M.T.P.; Ripperda, B. Resolution analysis of magnetically arrested disc simulations. Mon. Not. R. Astron. Soc. 2024, 533, 254–267. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope Collaboration]. The persistent shadow of the supermassive black hole of M87. Astron. Astrophys. 2024, 681, 63. [Google Scholar] [CrossRef]
- Chael, A.; Narayan, R.; Johnson, M.D. Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc. 2019, 486, 2873–2895. [Google Scholar] [CrossRef]
- Chan, H.-S.; Chan, C. The 230 GHz Variability of Numerical Models of Sagittarius A*. II. The Physical Origins of the Variability. Astrophys. J. 2025, 985, 164. [Google Scholar] [CrossRef]
- Palit, I.; Dihingia, I.K.; Mizuno, Y.; Yang, H.Y.K. Obliquity of Black Hole Magnetosphere and its Impact on Accretion Dynamics. Astrophys. J. 2025. under review. [Google Scholar]
- Gammie, C.F.; McKinney, J.C.; Tóth, G. HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics. Astrophys. J. 2003, 589, 444–457. [Google Scholar] [CrossRef]
- Noble, S.C.; Gammie, C.F.; McKinney, J.C.; Del Zanna, L. Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics. Astrophys. J. 2006, 641, 626–637. [Google Scholar] [CrossRef]
- Sapountzis, K.; Janiuk, A. The MRI Imprint on the Short-GRB Jets. Astrophys. J. 2019, 873, 12–21. [Google Scholar] [CrossRef]
- Fishbone, L.G.; Moncrief, V. Relativistic fluid disks in orbit around Kerr black holes. Astrophys. J. 1976, 207, 962–976. [Google Scholar] [CrossRef]
- Igumenshchev, I.V.; Narayan, R.; Abramowicz, M.A. Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J. 2003, 592, 1042–1059. [Google Scholar] [CrossRef]
- Narayan, R.; Igumenshchev, I.V.; Abramowicz, M.A. Magnetically Arrested Disk: An Energetically Efficient Accretion Flow. Publ. Astron. Soc. Jpn. 2003, 55, L69–L72. [Google Scholar] [CrossRef]
- James, B.; Janiuk, A.; Hossein Nouri, F. Modeling the Gamma-Ray Burst Jet Properties with 3D General Relativistic Simulations of Magnetically Arrested Accretion Flows. Astrophys. J. 2022, 935, 176. [Google Scholar] [CrossRef]
- McKinney, J.C.; Gammie, C.F. A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole. Astrophys. J. 2004, 611, 977–995. [Google Scholar] [CrossRef]
- Liska, M.; Tchekhovskoy, A.; Quataert, E. Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole accretion with toroidal field. Mon. Not. R. Astron. Soc. 2020, 494, 3656–3662. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palit, I.; Sodejana, M.A.P.; Yang, H.-Y.K. Exploring the Role of Vector Potential and Plasma-β in Jet Formation from Magnetized Accretion Flows. Universe 2025, 11, 404. https://doi.org/10.3390/universe11120404
Palit I, Sodejana MAP, Yang H-YK. Exploring the Role of Vector Potential and Plasma-β in Jet Formation from Magnetized Accretion Flows. Universe. 2025; 11(12):404. https://doi.org/10.3390/universe11120404
Chicago/Turabian StylePalit, Ishika, Miles Angelo Paloma Sodejana, and Hsiang-Yi Karen Yang. 2025. "Exploring the Role of Vector Potential and Plasma-β in Jet Formation from Magnetized Accretion Flows" Universe 11, no. 12: 404. https://doi.org/10.3390/universe11120404
APA StylePalit, I., Sodejana, M. A. P., & Yang, H.-Y. K. (2025). Exploring the Role of Vector Potential and Plasma-β in Jet Formation from Magnetized Accretion Flows. Universe, 11(12), 404. https://doi.org/10.3390/universe11120404

