Inferring Cosmological Parameters with Evidential Physics-Informed Neural Networks
Abstract
1. Introduction
2. Model Formulation
2.1. Basic Structure of the Neural Network and the Loss Function
2.2. Using Gaussian Processes to Supervise Uncertainties
2.3. A Summary List of Model Implementation
- (I)
- (II)
- Independently, a GP regression model is fitted to data so as to gain epistemic uncertainty information for supervising , and for constructing (see Appendix A.2 for full details)
- (III)
- Upon convergence of the purely data-fitted model, we can now determine the prior following the steps described in Appendix A.3. (This essentially involves solving for using (A14) and (A16).)
- (IV)
- We then proceed with the second phase of model training. This phase of training refines the purely data-fitted model such that it conforms to the presumed PDE description. Apart from the model’s weights, are also learnable parameters. In this final phase, the model is trained using the full loss functionwith each of the six individual loss terms defined in Equations (6)–(8), (10), (12) and (A9).
- (V)
- Upon completion of training, the model predictions are expressed by the target variable while confidence bands can be constructed from . We also infer the PDE parameters with its uncertainty as defined by the median and credible intervals of the posterior distribution.
3. Methodology
3.1. On the Datasets and Some Limitations
3.2. Model Training Setup and Implementation Details
3.3. On Empirical Coverage Probability and Log Model Evidence
4. Results
4.1. On Tensions Between Models Trained Separately on Pantheon+ and BAO Data
4.2. On Models Trained on the Combined Pantheon+ and BAO Data
5. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Some Technical Aspects of the Loss Function
Appendix A.1. On the t-Distribution in EDL
Appendix A.2. On Uncertainty of and Its Prior Distribution
Appendix A.3. Determination of
Appendix B. Some Plots of Posterior Distributions




| 1 | The posterior density implied by our loss function is not normalized, yet the normalization factor would involve which is not taken into account during model training. For this reason, we consider our inference procedure a maximum likelihood estimation regularized by a prior density. |
| 2 | We are grateful to an anonymous referee for advising us to emphasize this caveat. |
| 3 | We are grateful to an anonymous referee for raising this point. |
References
- Brout, D.; Scolnic, D.; Popovic, B.; Riess, A.G.; Carr, A.; Zuntz, J.; Kessler, R.; Davis, T.M.; Hinton, S.; Jones, D.; et al. The Pantheon+ Analysis: Cosmological Constraints. Astrophys. J. 2022, 938, 110. [Google Scholar] [CrossRef]
- Bousis, D.; Perivolaropoulos, L. Hubble tension tomography: BAO vs SnIa distance tension. arXiv 2024, arXiv:2405.07039. [Google Scholar] [CrossRef]
- Alestas, G.; Kazantzidis, L.; Perivolaropoulos, L. H0 tension, phantom dark energy, and cosmological parameter degeneracies. Phys. Rev. D 2020, 101, 123516. [Google Scholar] [CrossRef]
- Akarsu, O.; Valentino, E.D.; Kumar, S.; Nunes, R.C.; Vazquez, J.A.; Yadav, A. ΛsCDM model: A promising scenario for alleviation of cosmological tensions. arXiv 2023, arXiv:2307.10899. [Google Scholar] [CrossRef]
- Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 2008, 49, 71–104. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Tan, H.S.; Wang, K.; McBeth, R. Evidential Physics-Informed Neural Networks. arXiv 2025, arXiv:2501.15908. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.S.; Wang, K.; McBeth, R. Evidential Physics-Informed Neural Networks for Scientific Discovery. arXiv 2025, arXiv:2509.14568. [Google Scholar] [CrossRef]
- Amini, A.; Schwarting, W.; Soleimany, A.; Rus, D. Deep evidential regression. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Online, 6–12 December 2020. NIPS ’20. [Google Scholar]
- Sensoy, M.; Kaplan, L.; Kandemir, M. Evidential Deep Learning to Quantify Classification Uncertainty. arXiv 2018, arXiv:1806.01768. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- Röver, L.; Schäfer, B.M.; Plehn, T. PINNferring the Hubble Function with Uncertainties. arXiv 2024, arXiv:2403.13899. [Google Scholar] [CrossRef]
- Chantada, A.T.; Landau, S.J.; Protopapas, P.; Scóccola, C.G.; Garraffo, C. Cosmology-informed neural networks to solve the background dynamics of the Universe. Phys. Rev. D 2023, 107, 063523. [Google Scholar] [CrossRef]
- Qi, J.Z.; Meng, P.; Zhang, J.F.; Zhang, X. Model-independent measurement of cosmic curvature with the latest H(z) and SNe Ia data: A comprehensive investigation. Phys. Rev. D 2023, 108, 063522. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Rudin, C.; Shaposhnik, Y. Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization. arXiv 2021, arXiv:2012.04456. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, Y.L.; Zhang, T.J. Model Comparison of Dark Energy models Using Deep Network. arXiv 2019, arXiv:1907.00568. [Google Scholar] [CrossRef]
- Mukherjee, P.; Said, J.L.; Mifsud, J. Neural network reconstruction of H’(z) and its application in teleparallel gravity. J. Cosmol. Astropart. Phys. 2022, 2022, 029. [Google Scholar] [CrossRef]
- Abedin, M.; Wang, G.J.; Ma, Y.Z.; Pan, S. In search of an interaction in the dark sector through Gaussian Process and ANN approaches. Mon. Not. R. Astron. Soc. 2025, 540, 2253–2268. [Google Scholar] [CrossRef]
- Wang, G.J.; Ma, X.J.; Li, S.Y.; Xia, J.Q. Reconstructing Functions and Estimating Parameters with Artificial Neural Networks: A Test with a Hubble Parameter and SNe Ia. Astrophys. J. Suppl. Ser. 2020, 246, 13. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quantum Gravity 2021, 38, 153001. [Google Scholar] [CrossRef]
- Scolnic, D.; Brout, D.; Carr, A.; Riess, A.G.; Davis, T.M.; Dwomoh, A.; Jones, D.O.; Ali, N.; Charvu, P.; Chen, R.; et al. The Pantheon+ Analysis: The Full Data Set and Light-curve Release. Astrophys. J. 2022, 938, 113. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Adame, A.G.; Aguilar, J.; Ahlen, S.; Alam, S.; Alexander, D.M.; Alvarez, M.; Alves, O.; Anand, A.; Andrade, U.; Armengaud, É.; et al. DESI 2024 VI: Cosmological constraints from the measurements of baryon acoustic oscillations. J. Cosmol. Astropart. Phys. 2024, 2025, 021. [Google Scholar] [CrossRef]
- Sridhar, S.; Song, Y.S.; Ross, A.J.; Zhou, R.; Newman, J.A.; Chuang, C.H.; Blum, R.; Gaztañaga, E.; Landriau, M.; Prada, F. Clustering of LRGs in the DECaLS DR8 Footprint: Distance Constraints from Baryon Acoustic Oscillations Using Photometric Redshifts. Astrophys. J. 2020, 904, 69. [Google Scholar] [CrossRef]
- Reid, B.A.; Samushia, L.; White, M.; Percival, W.J.; Manera, M.; Padmanabhan, N.; Ross, A.J.; Sánchez, A.G.; Bailey, S.; Bizyaev, D.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering. Mon. Not. R. Astron. Soc. 2012, 426, 2719. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef]
- Seo, H.J.; Ho, S.; White, M.; Cuesta, A.J.; Ross, A.J.; Saito, S.; Reid, B.; Padmanabhan, N.; Percival, W.J.; de Putter, R.; et al. Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies. Astrophys. J. 2012, 761, 13. [Google Scholar] [CrossRef]
- Alam, S.; Aubert, M.; Avila, S.; Balland, C.; Bautista, J.E.; Bershady, M.A.; Bizyaev, D.; Blanton, M.R.; Bolton, A.S.; Bovy, J.; et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 2021, 103, 083533. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G.B.; Zhao, C.; Philcox, O.H.E.; Alam, S.; Tamone, A.; de Mattia, A.; Ross, A.J.; Raichoor, A.; Burtin, E.; et al. The clustering of the SDSS-IV extended baryon oscillation spectroscopic survey DR16 luminous red galaxy and emission-line galaxy samples: Cosmic distance and structure growth measurements using multiple tracers in configuration space. Mon. Not. R. Astron. Soc. 2020, 498, 3470–3483. [Google Scholar] [CrossRef]
- Zhu, F.; Padmanabhan, N.; Ross, A.J.; White, M.; Percival, W.J.; Ruggeri, R.; Zhao, G.b.; Wang, D.; Mueller, E.M.; Burtin, E.; et al. The clustering of theSDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: Measuring the anisotropic baryon acoustic oscillations with redshift weights. Mon. Not. R. Astron. Soc. 2018, 480, 1096–1105. [Google Scholar] [CrossRef]
- Tamone, A.; Raichoor, A.; Zhao, C.; de Mattia, A.; Gorgoni, C.; Burtin, E.; Ruhlmann-Kleider, V.; Ross, A.J.; Alam, S.; Percival, W.J.; et al. The completed SDSS-IV extended baryon oscillation spectroscopic survey: Growth rate of structure measurement from anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the emission-line galaxy sample. Mon. Not. R. Astron. Soc. 2020, 499, 5527–5546. [Google Scholar] [CrossRef]
- de Mattia, A.; Ruhlmann-Kleider, V.; Raichoor, A.; Ross, A.J.; Tamone, A.; Zhao, C.; Alam, S.; Avila, S.; Burtin, E.; Bautista, J.; et al. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1. Mon. Not. R. Astron. Soc. 2020, 501, 5616–5645. [Google Scholar] [CrossRef]
- Hou, J.; Sánchez, A.G.; Ross, A.J.; Smith, A.; Neveux, R.; Bautista, J.; Burtin, E.; Zhao, C.; Scoccimarro, R.; Dawson, K.S.; et al. The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from anisotropic clustering analysis of the quasar sample in configuration space between redshift 0.8 and 2.2. Mon. Not. R. Astron. Soc. 2020, 500, 1201–1221. [Google Scholar] [CrossRef]
- Neveux, R.; Burtin, E.; de Mattia, A.; Smith, A.; Ross, A.J.; Hou, J.; Bautista, J.; Brinkmann, J.; Chuang, C.-H.; Dawson, K.S.; et al. The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from the anisotropic power spectrum of the quasar sample between redshift 0.8 and 2.2. Mon. Not. R. Astron. Soc. 2020, 499, 210–229. [Google Scholar] [CrossRef]
- du Mas des Bourboux, H.; Rich, J.; Font-Ribera, A.; Agathe, V.d.S.; Farr, J.; Etourneau, T.; Le Goff, J.-M.; Cuceu, A.; Balland, C.; Bautista, J.E.; et al. The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations with Lyα Forests. Astrophys. J. 2020, 901, 153. [Google Scholar] [CrossRef]
- Delubac, T.; Bautista, J.E.; Busca, N.G.; Rich, J.; Kirkby, D.; Bailey, S.; Font-Ribera, A.; Slosar, A.; Lee, K.-G.; Pieri, M.M.; et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys. 2015, 574, A59. [Google Scholar] [CrossRef]
- Blomqvist, M.; Bourboux, H.d.M.D.; Busca, N.G.; Agathe, V.d.S.; Rich, J.; Balland, C.; Bautista, J.E.; Dawson, K.; Font-Ribera, A.; Guy, J.; et al. Baryon acoustic oscillations from the cross-correlation of Lyα absorption and quasars in eBOSS DR14. Astron. Astrophys. 2019, 629, A86. [Google Scholar] [CrossRef]
- du Mas des Bourboux, H.; Le Goff, J.-M.; Blomqvist, M.; Busca, N.G.; Guy, J.; Rich, J.; Yèche, C.; Bautista, J.E.; Burtin, É.; Dawson, K.S.; et al. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z = 2.4. Astron. Astrophys. 2017, 608, A130. [Google Scholar] [CrossRef]
- Blake, C.; Davis, T.; Poole, G.B.; Parkinson, D.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; Drinkwater, M.J.; et al. The WiggleZ Dark Energy Survey: Testing the cosmological model with baryon acoustic oscillations at z = 0.6: WiggleZ survey: BAOs at z = 0.6. Mon. Not. R. Astron. Soc. 2011, 415, 2892–2909. [Google Scholar] [CrossRef]
- Collaboration, D.; Abbott, T.M.C.; Adamow, M.; Aguena, M.; Allam, S.; Alves, O.; Amon, A.; Andrade-Oliveira, F.; Asorey, J.; Avila, S.; et al. Dark Energy Survey: A 2.1% measurement of the angular Baryonic Acoustic Oscillation scale at redshift zeff = 0.85 from the final dataset. arXiv 2024, arXiv:2402.10696. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck2018 results: VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Liu, T.; Cao, S.; Wang, J. A model-independent determination of the sound horizon using recent BAO measurements and strong lensing systems. arXiv 2024, arXiv:2406.18298. [Google Scholar] [CrossRef]
- Verde, L.; Bernal, J.L.; Heavens, A.F.; Jimenez, R. The length of the low-redshift standard ruler. Mon. Not. R. Astron. Soc. 2017, 467, 731–736. [Google Scholar] [CrossRef][Green Version]
- Jungo, A.; Reyes, M. Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation. arXiv 2019, arXiv:1907.03338. [Google Scholar] [CrossRef]
- Morey, R.D.; Romeijn, J.W.; Rouder, J.N. The philosophy of Bayes factors and the quantification of statistical evidence. J. Math. Psychol. 2016, 72, 6–18. [Google Scholar] [CrossRef]
- Nielsen, F. On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means. Entropy 2019, 21, 485. [Google Scholar] [CrossRef]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW–XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 2019, 498, 1420–1439. [Google Scholar] [CrossRef]
- Giare, W.; Betts, J.; van de Bruck, C.; Di Valentino, E. Model-Independent Test of Prerecombination New Physics: Measuring the Sound Horizon with Gravitational Wave Standard Sirens and the Baryon Acoustic Oscillation Angular Scale. Phys. Rev. Lett. 2025, 135, 071003. [Google Scholar] [CrossRef] [PubMed]
- Blanton, M.R.; Bershady, M.A.; Abolfathi, B.; Albareti, F.D.; Allende Prieto, C.; Almeida, A.; Alonso-García, J.; Anders, F.; Anderson, S.F.; Andrews, B.; et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astron. J. 2017, 154, 28. [Google Scholar] [CrossRef]
- Abdul Karim, M.; Aguilar, J.; Ahlen, S.; Alam, S.; Allen, L.; Prieto, C.A.; Alves, O.; Anand, A.; Andrade, U.; Armengaud, E.; et al. DESI DR2 results. II. Measurements of baryon acoustic oscillations and cosmological constraints. Phys. Rev. D 2025, 112, 083515. [Google Scholar] [CrossRef]
- Kendall, A.; Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; NIPS’17. pp. 5580–5590. [Google Scholar]
- Hyndman, R.J. Computing and Graphing Highest Density Regions. Am. Stat. 1996, 50, 120–126. [Google Scholar] [CrossRef]







| CDM | CDM | wCDM | |
|---|---|---|---|
| Pantheon+ data | , | , , | , , |
| BAO data | , | , , | , , |
| Combined Pantheon+BAO | , | , , | , , |
| Model | Dataset | , | |||
|---|---|---|---|---|---|
| Pantheon+ | 3687 | ||||
| CDM | BAO | 59.8 | |||
| Combined | 3717 | ||||
| Pantheon+ | 3685 | ||||
| wCDM | BAO | 60.2 | |||
| Combined | 3712 | ||||
| Pantheon+ | 3688 | ||||
| CDM | BAO | 61.0 | |||
| Combined | 3650 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.S. Inferring Cosmological Parameters with Evidential Physics-Informed Neural Networks. Universe 2025, 11, 403. https://doi.org/10.3390/universe11120403
Tan HS. Inferring Cosmological Parameters with Evidential Physics-Informed Neural Networks. Universe. 2025; 11(12):403. https://doi.org/10.3390/universe11120403
Chicago/Turabian StyleTan, Hai Siong. 2025. "Inferring Cosmological Parameters with Evidential Physics-Informed Neural Networks" Universe 11, no. 12: 403. https://doi.org/10.3390/universe11120403
APA StyleTan, H. S. (2025). Inferring Cosmological Parameters with Evidential Physics-Informed Neural Networks. Universe, 11(12), 403. https://doi.org/10.3390/universe11120403

