Matched Metabolic Stress Preserves Myokine Responses Regardless of Mechanical Load: A Randomized, Controlled Crossover Trial
Abstract
1. Introduction
2. Method
2.1. Definitions of Terms
2.2. Participants
2.3. Study Design
2.4. Base Data Collection
2.5. Intervention
2.6. SRE Test Protocol
2.7. SLE Test Protocol
2.8. Blood Sampling
2.9. Statistical Analysis
2.10. Sample Size Calculation
3. Results
4. Discussion
4.1. Summary of Main Results
4.2. Characteristics of Myokine (IL-6, BDNF) Secretion Responses According to Aerobic Exercise Intensity
4.3. Bone and Muscle Adaptation and Myokine Responses in a Low-Gravity Environment
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AT | Anaerobic Threshold |
BDNF | Brain-Derived Neurotrophic Factor |
CPX | Cardiopulmonary Exercise Testing |
IL-6 | Interleukin-6 |
SRE | Semi-Recumbent Ergometer (a novel index proposed in this study) |
SLE | Side-Lying Ergometer (a novel index proposed in this study) |
peak O2 | Peak Oxygen Uptake |
References
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Laurens, C.; Bergouignan, A.; Moro, C. Exercise-Released Myokines in the Control of Energy Metabolism. Front. Physiol. 2020, 11, 91. [Google Scholar] [CrossRef]
- Zunner, B.E.M.; Wachsmuth, N.B.; Eckstein, M.L.; Scherl, L.; Schierbauer, J.R.; Haupt, S.; Stumpf, C.; Reusch, L.; Moser, O. Myokines and Resistance Training: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 3501. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, Z.; Zhang, X.A.; Ning, K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024, 14, 1205. [Google Scholar] [CrossRef]
- Duchateau, J.; Stragier, S.; Baudry, S.; Carpentier, A. Strength Training: In Search of Optimal Strategies to Maximize Neuromuscular Performance. Exerc. Sport. Sci. Rev. 2021, 49, 2–14. [Google Scholar] [CrossRef]
- McCrory, J.L.; Baron, H.A.; Balkin, S.; Cavanagh, P.R. Locomotion in simulated microgravity: Gravity replacement loads. Aviat. Space Environ. Med. 2002, 73, 625–631. [Google Scholar] [PubMed]
- Santos, B.P.; DeJong Lempke, A.F.; Higgins, M.J.; Hertel, J. Influence of Reduced-Gravity Treadmill Running on Sensor-Derived Biomechanics. Sports Health 2023, 15, 645–652. [Google Scholar] [CrossRef]
- Clément, G. International roadmap for artificial gravity research. npj Microgravity 2017, 3, 29. [Google Scholar] [CrossRef]
- Lau, P.; Vico, L.; Rittweger, J. Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines? Biomedicines 2022, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Santos, C.; Castrillón, C.I.; Miranda, R.A.; Monteiro, P.A.; Inoue, D.S.; Campos, E.Z.; Hofmann, P.; Lira, F.S. Inflammatory Cytokines and BDNF Response to High-Intensity Intermittent Exercise: Effect the Exercise Volume. Front. Physiol. 2016, 7, 509. [Google Scholar] [CrossRef]
- Griffin, É.W.; Mullally, S.; Foley, C.; Warmington, S.A.; O’Mara, S.M.; Kelly, A.M. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 2011, 104, 934–941. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Steensberg, A.; Schjerling, P. Exercise and interleukin-6. Curr. Opin. Hematol. 2001, 8, 137–141. [Google Scholar] [CrossRef]
- Nash, D.; Hughes, M.G.; Butcher, L.; Aicheler, R.; Smith, P.; Cullen, T.; Webb, R. IL-6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand. J. Med. Sci. Sports 2023, 33, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Curovic, I. The role of resistance exercise-induced local metabolic stress in mediating systemic health and functional adaptations: Could condensed training volume unlock greater benefits beyond time efficiency? Front. Physiol. 2025, 16, 1549609. [Google Scholar] [CrossRef]
- Docherty, S.; Harley, R.; McAuley, J.J.; Crowe, L.A.N.; Pedret, C.; Kirwan, P.D.; Siebert, S.; Millar, N.L. The effect of exercise on cytokines: Implications for musculoskeletal health: A narrative review. BMC Sports Sci. Med. Rehabil. 2022, 14, 5. [Google Scholar] [CrossRef]
- Omoto, M.; Matsuse, H.; Hashida, R.; Takano, Y.; Yamada, S.; Ohshima, H.; Tagawa, Y.; Shiba, N. Cycling Exercise with Electrical Stimulation of Antagonist Muscles Increases Plasma Growth Hormone and IL-6. Tohoku J. Exp. Med. 2015, 237, 209–217. [Google Scholar] [CrossRef]
- Abbotts, K.S.S.; Ewell, T.R.; Bomar, M.C.; Butterklee, H.M.; Bell, C. Caffeine Augments the Lactate and Interleukin-6 Response to Moderate-Intensity Exercise. Med. Sci. Sports Exerc. 2023, 55, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Casado, A.; González-Mohíno, F.; González-Ravé, J.M.; Foster, C. Training Periodization, Methods, Intensity Distribution, and Volume in Highly Trained and Elite Distance Runners: A Systematic Review. Int. J. Sports Physiol. Perform. 2022, 17, 820–833. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Ekblom, Ö.; Ekblom, M.; Lebedev, A.; Tarassova, O.; Moberg, M.; Lövdén, M. Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults. Sci. Rep. 2020, 10, 4395. [Google Scholar] [CrossRef]
- Müller, P.; Duderstadt, Y.; Lessmann, V.; Müller, N.G. Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J. Clin. Med. 2020, 9, 1136. [Google Scholar] [CrossRef] [PubMed]
- Leal, L.G.; Lopes, M.A.; Batista, M.L., Jr. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 2018, 9, 1307. [Google Scholar] [CrossRef]
- Shero, J.A.; Lindholm, M.E.; Sandri, M.; Stanford, K.I. Skeletal Muscle as a Mediator of Interorgan Crosstalk During Exercise: Implications for Aging and Obesity. Circ. Res. 2025, 136, 1407–1432. [Google Scholar] [CrossRef]
- Chen, Z.T.; Weng, Z.X.; Lin, J.D.; Meng, Z.X. Myokines: Metabolic regulation in obesity and type 2 diabetes. Life Metab. 2024, 3, loae006. [Google Scholar] [CrossRef]
- Son, B.K.; Nanao-Hamai, M.; Umeda-Kameyama, Y.; Lyu, W.; Tanaka, T.; Yoshizawa, Y.; Akishita, M.; Iijima, K. Ikigai is associated with lower incidence of frailty during a 5-year follow-up in older women: The possible role of interleukin-6. Arch. Gerontol. Geriatr. 2025, 131, 105776. [Google Scholar] [CrossRef]
- Phillips, C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast. 2017, 2017, 7260130. [Google Scholar] [CrossRef] [PubMed]
- Biolo, G.; Ciocchi, B.; Stulle, M.; Bosutti, A.; Barazzoni, R.; Zanetti, M.; Antonione, R.; Lebenstedt, M.; Platen, P.; Heer, M.; et al. Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest. Am. J. Clin. Nutr. 2007, 86, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Juhl, O.J., IV; Buettmann, E.G.; Friedman, M.A.; DeNapoli, R.C.; Hoppock, G.A.; Donahue, H.J. Update on the effects of microgravity on the musculoskeletal system. npj Microgravity 2021, 7, 28. [Google Scholar] [CrossRef]
Characteristic | Value (n = 12) |
---|---|
Age (year) | 21.3 ± 0.9 |
Sex (male/female) | male (100%) |
Height (cm) | 174.1 ± 5.5 |
Weight (kg) | 64.4 ± 7.6 |
BMI (kg/m2) | 21.1 ± 2.0 |
Peak O2 (mL/kg/min) | 33.4 ± 3.6 |
Marker | Variable | Pre | 0 min | 30 min | 60 min |
---|---|---|---|---|---|
Lactate (mg/dL) | SRE | 13.4 ± 3.7 | 34.6 ± 15.9 ## | 13.4 ± 3.7 | 10.3 ± 2.4 |
SLE | 9.9 ± 2.7 | 38.3 ± 16.7 ### | 14.7 ± 4.2 ## | 11.6 ± 3.4 |
Marker | Variable | Pre | 0 min | 30 min | 60 min |
---|---|---|---|---|---|
IL-6 (pg/mL) | SRE | 0.9 ± 0.6 | 1.0 ± 0.6 | 1.3 ± 0.6 # | 1.1 ± 0.7 |
SLE | 0.7 ± 0.5 | 0.9 ± 0.4 # | 1.2 ± 0.5 ## | 1.1 ± 0.7 ## |
Marker | Variable | Pre | 0 min | 30 min | 60 min |
---|---|---|---|---|---|
BDNF (pg/dL) | SRE | 30,590 ± 5879 | 34,910 ± 6984 ## | 29,800 ± 6541 | 30,220 ± 6906 |
SLE | 30,880 ± 6232 | 34,650 ± 8393 # | 29,910 ± 7895 | 29,470 ± 5275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maki, Y.; Matsuse, H.; Hashida, R.; Matsukuma, N.; Tajima, H.; Baba, E.; Kaneyuki, Y.; Iwanaga, S.; Omoto, M.; Takano, Y.; et al. Matched Metabolic Stress Preserves Myokine Responses Regardless of Mechanical Load: A Randomized, Controlled Crossover Trial. Metabolites 2025, 15, 641. https://doi.org/10.3390/metabo15100641
Maki Y, Matsuse H, Hashida R, Matsukuma N, Tajima H, Baba E, Kaneyuki Y, Iwanaga S, Omoto M, Takano Y, et al. Matched Metabolic Stress Preserves Myokine Responses Regardless of Mechanical Load: A Randomized, Controlled Crossover Trial. Metabolites. 2025; 15(10):641. https://doi.org/10.3390/metabo15100641
Chicago/Turabian StyleMaki, Yuji, Hiroo Matsuse, Ryuki Hashida, Norika Matsukuma, Hiroshi Tajima, Eriko Baba, Yuji Kaneyuki, Sohei Iwanaga, Masayuki Omoto, Yoshio Takano, and et al. 2025. "Matched Metabolic Stress Preserves Myokine Responses Regardless of Mechanical Load: A Randomized, Controlled Crossover Trial" Metabolites 15, no. 10: 641. https://doi.org/10.3390/metabo15100641
APA StyleMaki, Y., Matsuse, H., Hashida, R., Matsukuma, N., Tajima, H., Baba, E., Kaneyuki, Y., Iwanaga, S., Omoto, M., Takano, Y., Shigeaki, M., Nago, T., & Hiraoka, K. (2025). Matched Metabolic Stress Preserves Myokine Responses Regardless of Mechanical Load: A Randomized, Controlled Crossover Trial. Metabolites, 15(10), 641. https://doi.org/10.3390/metabo15100641