Study on the Metabolic Transformation Rule of Enrofloxacin Combined with Tilmicosin in Laying Hens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Standard Solutions
2.3. Animals
2.4. Animal Experimental Design
2.4.1. Animal Grouping and Sampling
2.4.2. Sample Pretreatment
2.4.3. Method for Detection of EF in Combination with TIM in Eggs
2.5. Method Validation
2.6. Samples Testing
2.7. Data Analysis
- X-EF/CIP/TIM concentration per unit weight (volume) of a sample, expressed in μg/kg;
- A: peak area of the loading solution.
- AS: peak area of the standard control solution.
- CS: the concentration of the standard reference solution, expressed in μg/kg.
- V1: total volume of extract, expressed in mL.
- V2: volume of extract removed for nitrogen blowing concentration, expressed in mL.
- V3: constant volume after concentration, expressed in mL.
- M: mass of sample, expressed in g.
- D: dilution ratio before determination.
3. Results and Analysis
3.1. Assessment of Methodology
3.1.1. Specificity
3.1.2. Minimum Detection Limit and Minimum Quantification Limit
3.1.3. Matrix Standard Curve
3.1.4. Accuracy and Precision
3.2. Residue Elimination Features of EF in Eggs
3.3. Residue Elimination Characteristics of TIM in Eggs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shasha, L.I.; Xiande, L.I. Demand and Trend of Chinese Residents’ Egg Consumption. China Poult. 2018, 40, 1–7. [Google Scholar]
- Alaboudi, A.; Basha, E.A.; Musallam, I. Chlortetracycline and sulfanilamide residues in table eggs: Prevalence, distribution between yolk and white and effect of refrigeration and heat treatment. Food Control 2013, 33, 281–286. [Google Scholar] [CrossRef]
- Nisha, A.R. Antibiotic Residues—A Global Health Hazard. Vet. World 2008, 1, 375–377. [Google Scholar] [CrossRef]
- Hassouan, M.K.; Ballesteros, O.; Taoufiki, J.; Vílchez, J.L.; Cabrera-Aguilera, M.; Navalón, A. Multiresidue determination of quinolone antibacterials in eggs of laying hens by liquid chromatography with fluorescence detection. J. Chromatogr. B 2007, 852, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Goetting, V.; Lee, K.A.; Tell, L.A. Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: A review of the literature. J. Vet. Pharmacol. Ther. 2011, 34, 521–556. [Google Scholar] [CrossRef]
- Gajda, A.; Posyniak, A. Doxycycline depletion and residues in eggs after oral administration to laying hens. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Marmulak, T.; Tell, L.A.; Gehring, R.; Baynes, R.E.; Vickroy, T.W.; Riviere, J.E. Egg residue considerations during the treatment of backyard poultry. J. Am. Vet. Med. Assoc. 2015, 248, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaartinen, L.; Salonen, M.; Alli, L.; Pyörälä, S. Pharmacokinetics of enrofloxacin after single intravenous, intramuscular and subcutaneous injections in lactating cows. J. Vet. Pharmacol. Ther. 2010, 18, 357–362. [Google Scholar] [CrossRef] [PubMed]
- López-Cadenas, C.; Sierra-Vega, M.; García-Vieitez, J.J.; Diez-Liébana, M.J.; Sahagún-Prieto, A.; Fernández-Martínez, N. Enrofloxacin: Pharmacokinetics and metabolism in domestic animal species. Curr. Drug Metab. 2013, 14, 1042–1058. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Q.; Yang, Y.; Martínez, M.A.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Wang, X.; Anadón, A.; Ares, I. A proposed “steric-like effect” for the slowdown of enrofloxacin antibiotic metabolism by ciprofloxacin, and its mechanism. Chemosphere 2021, 284, 131347. [Google Scholar] [CrossRef]
- Farahmand, S.; Aref, S.; Nordehr, R.; Rahim, M.; Fariba, G. Enrofloxacin Residue in Chicken Tissues from Tehran Slaughterhouses in Iran. Pak. J. Nutr. 2007, 6, 409–413. [Google Scholar]
- Gbylik-Sikorska, M.; Posyniak, A.; Gajda, A.; Bdek, T. Determinaton of enrofloxacin and ciprofloxacin in albumin and freeze-dried-eggs by liquid chromatography with fluorescence detection. Bull. Vet. Inst. Pulawy 2013, 57, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Deng, F.; He, R.; Tan, L.; Luo, X.; Pan, X.; Yang, Z. A pass-through solid-phase extraction clean-up method for the determination of 11 quinolone antibiotics in chicken meat and egg samples using ultra-performance liquid chromatography tandem mass spectrometry. Microchem. J. 2019, 151, 104213. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, J.J.; Cong, J.M. Optimization for quick, easy, cheap, effective, rugged and safe extraction of mycotoxins and veterinary drugs by response surface methodology for application to egg and milk. J. Chromatogr. A 2018, 1532, 20–29. [Google Scholar] [CrossRef]
- Ji, X.; Yang, H.; Wang, J.; Zhou, W.; Qian, M. Evaluation of Tilmicosin Contamination in Eggs Following Its Administration to Laying Hens and Subsequent Assessment of Dietary Risks to Chinese Consumers. J. Food Sci. 2019, 84, 3054–3062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhou, M.; Yan, X.; Liu, J.; Yuan, S.; Yang, H.; Ding, H.; Zhang, D.; Bai, Y. Pharmacokinetic and Pharmacodynamic integration of tilmicosin against Mycoplasma gallisepticum in the target infection site in chickens. Front. Vet. Sci. 2022, 9, 952599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, H.; Jin, X.; Shen, Z.; Shen, J.; Fu, C.; Guo, J. Residue Depletion of Tilmicosin in Chicken Tissues. J. Agric. Food Chem. 2004, 52, 2602–2605. [Google Scholar] [CrossRef] [PubMed]
- Bogialli, S.; Ciampanella, C.; Curini, R.; Di Corcia, A.; Laganà, A. Development and validation of a rapid assay based on liquid chromatography-tandem mass spectrometry for determining macrolide antibiotic residues in eggs. J. Chromatogr. A 2009, 1216, 6810–6815. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Okihashi, M.; Harada, K.; Konishi, Y.; Uchida, K.; Mai, H.; Bui, L.T.; Nguyen, T.D.; Phan, H.B.; Bui, H.T. Detection of antibiotics in chicken eggs obtained from supermarkets in Ho Chi Minh City, Vietnam. J. Environ. Sci. Health B 2017, 52, 430–433. [Google Scholar] [CrossRef]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef]
- Cheng, F.; Kovács, I.A.; Barabási, A.L. Network-based prediction of drug combinations. Nat. Commun. 2019, 10, 1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lappas, N.T.; Lappas, C.M. Chapter 3—Drug Interactions. In Forensic Toxicol, 2nd ed.; Academic Press: San Diego, CA, USA, 2022; pp. 45–71. [Google Scholar]
- Mavromati, J.; Shehu, F.; Mavromati, E. The Influence of Tilmicosine and Enrofloxacine in Mycoplasmas Control, Hatchary Performance and Quality of Eggs and Day Old Chicks. Indian J. Appl. Res. 2011, 12, 417–419. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, X.; Badawy, S.; Ihsan, A.; Tao, Y. A Review: Effects of macrolides on CYP450 enzymes. Curr. Drug Metab. 2020, 21, 928–937. [Google Scholar] [CrossRef]
- Koroleva, P.I.; Kuzikov, A.V.; Masamrekh, R.A.; Filimonov, D.A.; Shumyantseva, V.V. Modeling of drug-drug interactions between omeprazole and erythromycin with cytochrome P450 3A4 in vitro assay. Biomeditsinskaia Khimiia 2020, 66, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; Wang, L.; Badawy, S.; Liu, Z.; Xie, C.; Wang, X.; Tao, Y. A new drug-drug interaction-tilmicosin reduces the metabolism of enrofloxacin through CYP3A4. Res. Vet. Sci. 2022, 148, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Nedbalcova, K.; Kucharovicova, I.; Zouharova, M.; Matiaskova, K.; Kralova, N.; Brychta, M.; Simek, B.; Pecha, T.; Plodkova, H.; Matiasovic, J. Resistance of Streptococcus suis Isolates from the Czech Republic during 2018–2022. Antibiotics 2022, 11, 1214. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, Y.; Guo, M.; Martínez, M.A.; Ares, I.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Wang, X.; Anadón, A.; Martínez, M. The “steric-like” inhibitory effect and mechanism of doxycycline on florfenicol metabolism: Interaction risk. Food Chem. Toxicol. 2022, 169, 113431. [Google Scholar] [CrossRef]
- Rezaee Moghadam, N.; Arefhosseini, S.R.; Javadi, A.; Lotfipur, F.; Ansarin, M.; Tamizi, E.; Nemati, M. Determination of Enrofloxacin and Ciprofloxacin Residues in Five Different Kinds of Chicken Tissues by Dispersive Liquid-Liquid Microextraction Coupled with HPLC. Iran. J. Pharm. Res. 2018, 17, 1182–1190. [Google Scholar]
- Guidi, L.R.; Santos, F.A.; Ribeiro, A.; Fernandes, C.; Silva, L.H.M.; Gloria, M.B.A. Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method. Food Chem. 2018, 245, 1232–1238. [Google Scholar] [CrossRef]
- Martins, M.T.; Barreto, F.; Hoff, R.B.; Jank, L.; Arsand, J.B.; Feijó, T.C.; Schapoval, E.E. Determination of quinolones and fluoroquinolones, tetracyclines and sulfonamides in bovine, swine and poultry liver using LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 333–341. [Google Scholar] [CrossRef]
- Mund, M.D.; Khan, U.H.; Tahir, U.; Mustafa, B.-E.; Fayyaz, A. Antimicrobial drug residues in poultry products and implications on public health: A review. Int. J. Food Prop. 2017, 20, 1433–1446. [Google Scholar] [CrossRef] [Green Version]
- McCracken, R.J.; Van Rhijn, J.A.; Kennedy, D.G. The occurrence of nitrofuran metabolites in the tissues of chickens exposed to very low dietary concentrations of the nitrofurans. Food Addit. Contam. 2005, 22, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Cabrera Pérez, M.A.; González Díaz, H.; Fernández Teruel, C.; Plá-Delfina, J.M.; Bermejo Sanz, M. A novel approach to determining physicochemical and absorption properties of 6-fluoroquinolone derivatives: Experimental assessment. Eur. J. Pharm. Biopharm. 2002, 53, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Sander, P.; Iqbal, Z.; Wang, Y.; Cheng, G.; Yuan, Z. The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and their Molecular Basis. Front. Microbiol. 2016, 7, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, J.M.; Chiller, T.M.; Powers, J.H.; Angulo, F.J. Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: A public health success story. Clin. Infect. Dis. 2007, 44, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Kempf, I.; Reeve-Johnson, L.; Gesbert, F.; Guittet, M. Efficacy of tilmicosin in the control of experimental Mycoplasma gallisepticum infection in chickens. Avian Dis. 1997, 41, 802–807. [Google Scholar] [CrossRef]
- Xiong, J.; Zhu, Q.; Zhao, Y.; Yang, S.; Cao, J.; Qiu, Y. Tilmicosin enteric granules and premix to pigs: Antimicrobial susceptibility testing and comparative pharmacokinetics. J. Vet. Pharmacol. Ther. 2019, 42, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Liu, Z.; Wei, Y.; Zhang, C.; Mao, C.; Cai, Q.; Shen, X.; Ding, H. Comparison of the pharmacokinetics of tilmicosin in plasma and lung tissue in healthy chickens and chickens experimentally infected with Mycoplasma gallisepticum. J. Vet. Pharmacol. Ther. 2020, 43, 347–354. [Google Scholar] [CrossRef]
Compound | Parent Ion (m/z) | Daughter Ion (m/z) | Collision Pressure (EV) |
---|---|---|---|
TIM | 869.4 | 174.2 | 62 |
694.3 | 70 | ||
EF | 360.1 | 315.97 | 19 |
342 | 21 | ||
CIP | 332.3 | 314 | 21 |
231 | 35 |
Sample | Linear Equation | Coefficient of Correlation R | Range of Linearity (μg/L) |
---|---|---|---|
EF | Y = 14,808X + 134,620 | 0.9935 | 10~500 |
CIP | Y = 5296.7X + 129,506 | 0.9958 | 10~500 |
TIM | Y = 236.47X − 1.8887 | 0.9992 | 10~500 |
Sample | Concentration of Addition (μg/kg) | Recovery Rate (%) | Average Recovery Rate in Batch (%) | Coefficient of Variation in Batch (%) | Average Inter-Lot Recovery Rate (%) | Coefficient of Variation between Batches (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||
CIP | 10 | 85.25 | 73.34 | 83.25 | 69.02 | 87.77 | 79.72 | 9.10 | 81.28 | 2.71 |
79.33 | 79.03 | 74.90 | 80.81 | 87.57 | 80.33 | 5.13 | ||||
76.97 | 85.58 | 86.63 | 86.25 | 83.58 | 83.80 | 4.27 | ||||
50 | 79.31 | 85.92 | 81.84 | 85.01 | 83.33 | 83.08 | 2.83 | 84.39 | 1.54 | |
86.67 | 78.51 | 80.52 | 90.63 | 92.08 | 85.68 | 6.27 | ||||
93.36 | 72.40 | 77.06 | 89.57 | 89.61 | 84.40 | 9.65 | ||||
100 | 80.07 | 86.11 | 79.65 | 79.22 | 91.19 | 83.25 | 5.65 | 87.06 | 3.88 | |
93.71 | 80.35 | 96.43 | 83.01 | 94.87 | 89.67 | 7.40 | ||||
94.45 | 79.55 | 94.55 | 80.26 | 92.44 | 88.25 | 7.77 | ||||
EF | 10 | 81.82 | 88.48 | 88.55 | 86.36 | 77.26 | 84.50 | 5.17 | 80.12 | 4.73 |
70.31 | 80.26 | 85.20 | 78.09 | 76.57 | 78.08 | 6.22 | ||||
79.25 | 78.46 | 78.27 | 75.52 | 77.42 | 77.78 | 1.63 | ||||
50 | 87.59 | 92.87 | 90.48 | 93.33 | 90.41 | 90.94 | 2.26 | 89.41 | 2.39 | |
80.09 | 97.87 | 90.67 | 83.75 | 99.25 | 90.33 | 8.35 | ||||
85.90 | 82.17 | 95.75 | 87.90 | 83.16 | 86.98 | 5.56 | ||||
100 | 85.32 | 90.08 | 93.08 | 94.33 | 96.41 | 91.84 | 4.19 | 92.33 | 1.04 | |
87.68 | 94.96 | 90.79 | 85.44 | 99.68 | 91.71 | 5.57 | ||||
94.67 | 97.33 | 82.36 | 88.44 | 104.38 | 93.43 | 8.07 | ||||
TIM | 10 | 76.11 | 85.65 | 87.54 | 83.61 | 74.48 | 81.48 | 6.42 | 82.39 | 4.59 |
69.65 | 80.90 | 89.56 | 75.96 | 79.68 | 79.15 | 8.23 | ||||
79.47 | 87.46 | 98.48 | 80.95 | 86.38 | 86.55 | 7.75 | ||||
50 | 80.44 | 84.96 | 83.67 | 80.55 | 77.58 | 81.44 | 3.20 | 87.62 | 6.18 | |
88.84 | 83.66 | 97.35 | 88.68 | 99.19 | 91.54 | 6.37 | ||||
94.37 | 87.34 | 82.24 | 92.37 | 93.07 | 89.88 | 5.01 | ||||
100 | 82.38 | 79.84 | 81.22 | 79.19 | 91.35 | 82.80 | 5.34 | 90.08 | 7.28 | |
83.85 | 99.49 | 89.58 | 86.97 | 99.77 | 91.93 | 7.12 | ||||
86.89 | 102.38 | 94.66 | 93.65 | 99.99 | 95.51 | 5.65 |
Time (d)/Sample Number (d) | EF Group | CIP Group |
---|---|---|
1 (n = 10) | 179.87 ± 30.14 | 15.60 ± 2.84 |
2 (n = 10) | 408.38 ± 136.13 | 36.83 ± 13.27 |
3 (n = 10) | 804.41 ± 112.19 | 52.82 ± 8.06 |
4 (n = 10) | 866.44 ± 14.85 | 80.33 ± 10.83 |
5 (n = 10) | 974.92 ± 441.71 | 121.51 ± 14.38 |
Time (d)/Sample Number (d) | EF Group | CIP Group |
---|---|---|
1 (n = 10) | 919.73 ± 346.5 | 84.90 ± 11.26 |
3 (n = 10) | 577.12 ± 101.85 | 42.12 ± 15.42 |
5 (n = 10) | 140.20 ± 29.05 | 31.37 ± 4.93 |
8 (n = 10) | 121.54 ± 19.12 | ND |
10 (n = 10) | 68.64 ± 8.68 | ND |
12 (n = 10) | 45.78 ± 8.65 | ND |
15 (n = 10) | ND | ND |
Time (d)/Sample Number (d) | EF Group | CIP Group |
---|---|---|
1 (n = 10) | 264.94 ± 43.74 | 16.61 ± 2.86 |
2 (n = 10) | 425.62 ± 87.86 | 40.56 ± 12.74 |
3 (n = 10) | 723.15 ± 99.88 | 54.40 ± 9.40 |
4 (n = 10) | 955.39 ± 128.82 | 76.98 ± 14.08 |
5 (n = 10) | 1256.41 ± 226.10 | 93.22 ± 22.79 |
Time (d)/Sample Number (d) | EF Group | CIP Group |
---|---|---|
1 (n = 10) | 997.97 ± 122.85 | 67.80 ± 9.25 |
3 (n = 10) | 715.55 ± 190.01 | 42.58 ± 7.43 |
5 (n = 10) | 199.15 ± 17.05 | 20.10 ± 3.20 |
8 (n = 10) | 153.29 ± 25.48 | ND |
10 (n = 10) | 89.51 ± 13.43 | ND |
12 (n = 10) | 58.71 ± 7.41 | ND |
15 (n = 10) | ND | ND |
Groups | Drugs | Elimination Equation | K (d−1) | t1/2 (d) |
---|---|---|---|---|
Single group | EF | C = 1504.4 e−0.615 t | 0.615 | 1.13 |
CIP | C = 130.52 e−0.498 t | 0.498 | 1.39 | |
Combined administration | EF | C = 1740.1 e−0.59 t | 0.59 | 1.17 |
CIP | C = 130.57 e−0.608 t | 0.608 | 1.14 |
Time (d)/Sample Number (d) | TIM Group | Combined Administration Group |
---|---|---|
1 (n = 10) | 21.83 ± 8.18 | 20.76 ± 3.72 |
2 (n = 10) | 47.44 ± 17.53 | 33.34 ± 18.30 |
3 (n = 10) | 68.97 ± 19.08 | 75.36 ± 16.27 |
Time (d)/Sample Number (d) | TIM Group | Combined Administration Group |
---|---|---|
1 (n = 10) | 72.59 ± 17.59 | 78.96 ± 10.96 |
3 (n = 10) | 57.12 ± 13.06 | 66.02 ± 11.51 |
5 (n = 10) | 49.49 ± 16.52 | 49.05 ± 5.27 |
8 (n = 10) | 41.01 ± 10.51 | 30.65 ± 9.19 |
10 (n = 10) | 24.87 ± 8.26 | 11.69 ± 5.33 |
12 (n = 10) | 12.95 ± 4.05 | 8.73 ± 1.42 |
15 (n = 10) | ND | ND |
Groups | Drugs | Elimination Equation | K (d−1) | t1/2 (d) |
---|---|---|---|---|
Single group | TIM | C = 115.6 e−0.323 t | 0.323 | 2.15 |
Combined administration | TIM | C = 161.47 e−0.476 t | 0.476 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhang, L.; Zhao, Y.; Ihsan, A.; Wang, X.; Tao, Y. Study on the Metabolic Transformation Rule of Enrofloxacin Combined with Tilmicosin in Laying Hens. Metabolites 2023, 13, 528. https://doi.org/10.3390/metabo13040528
Guo J, Zhang L, Zhao Y, Ihsan A, Wang X, Tao Y. Study on the Metabolic Transformation Rule of Enrofloxacin Combined with Tilmicosin in Laying Hens. Metabolites. 2023; 13(4):528. https://doi.org/10.3390/metabo13040528
Chicago/Turabian StyleGuo, Jingchao, Liyun Zhang, Yongxia Zhao, Awais Ihsan, Xu Wang, and Yanfei Tao. 2023. "Study on the Metabolic Transformation Rule of Enrofloxacin Combined with Tilmicosin in Laying Hens" Metabolites 13, no. 4: 528. https://doi.org/10.3390/metabo13040528
APA StyleGuo, J., Zhang, L., Zhao, Y., Ihsan, A., Wang, X., & Tao, Y. (2023). Study on the Metabolic Transformation Rule of Enrofloxacin Combined with Tilmicosin in Laying Hens. Metabolites, 13(4), 528. https://doi.org/10.3390/metabo13040528