Effects of Taurine Depletion on Body Weight and Mouse Behavior during Development
Abstract
:1. Introduction
2. Results
2.1. TauT−/− Mice Showed Decreased Anxiety-Like Behavior
2.2. TauT−/− Mice Showed Difficulty Hearing
2.3. Muscular Endurance Was Reduced in TauT−/− Mice
2.4. Body Weight Gain Was Reduced in TauT−/− Mice during Development
2.5. Body Weight Changes during 60% Food Restriction Were Similar in WT and TauT−/− Mice
2.6. Comprehensive Analysis of Protein Kinases and Target Proteins
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Measurements of Body Weight and Food Restriction
4.3. Behavioral Analysis
4.4. Kinexus Protein Microarray
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chesney, R.W. Taurine: Its biological role and clinical implications. Adv. Pediatr. 1985, 32, 1–42. [Google Scholar] [PubMed]
- Chapman, R.A.; Suleiman, M.S.; Earm, Y.E. Taurine and the heart. Cardiovasc. Res. 1993, 27, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Huxtable, R.J. Actions of taurine. Physiol. Rev. 1992, 72, 101–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Suzuki, T.; Wada, T.; Saigo, K.; Watanabe, K. Taurine as a constituent of mitochondrial tRNAs: New insights into the functions of taurine and human mitochondrial diseases. EMBO J. 2002, 21, 6581–6589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.Q.; Jin, H.; Nguyen, M.; Carr, J.; Lee, Y.J.; Hsu, C.C.; Faiman, M.D.; Schloss, J.V.; Wu, J.Y. Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J. Neurosci. Res. 2001, 66, 612–619. [Google Scholar] [CrossRef]
- Solís, J.M.; Herranz, A.S.; Herreras, O.; Lerma, J.; del Río, R.M. Does taurine act as an osmoregulatory substance in the rat brain? Neurosci. Lett. 1988, 91, 53–58. [Google Scholar] [CrossRef]
- You, J.S.; Chang, K.J. Taurine protects the liver against lipid peroxidation and membrane disintegration during rat hepatocarcinogenesis. Adv. Exp. Med. Biol. 1998, 442, 105–112. [Google Scholar]
- Martincigh, B.S.; Mundoma, C.; Simoyi, R.H. Antioxidant chemistry: Hypotaurine−taurine oxidation by chlorite. J. Phys. Chem. A 1998, 102, 9838–9846. [Google Scholar] [CrossRef]
- Ide, T.; Kushiro, M.; Takahashi, Y.; Shinohara, K.; Cha, S. mRNA expression of enzymes involved in taurine biosynthesis in rat adipose tissues. Metabolism 2002, 51, 1191–1197. [Google Scholar] [CrossRef]
- Uchida, S.; Kwon, H.M.; Yamauchi, A.; Preston, A.S.; Marumo, F.; Handler, J.S. Molecular cloning of the cDNA for an MDCK cell Na+- and Cl−-dependent taurine transporter that is regulated by hypertonicity. Proc. Natl. Acad. Sci. USA 1992, 89, 8230–8234. [Google Scholar] [CrossRef] [Green Version]
- Heller-Stilb, B.; van Roeyen, C.; Rascher, K.; Hartwig, H.G.; Huth, A.; Seeliger, M.W.; Warskulat, U.; Häussinger, D. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J. 2002, 16, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kimura, Y.; Uozumi, Y.; Takai, M.; Muraoka, S.; Matsuda, T.; Ueki, K.; Yoshiyama, M.; Ikawa, M.; Okabe, M.; et al. Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J. Mol. Cell. Cardiol. 2008, 44, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Warskulat, U.; Heller-Stilb, B.; Oermann, E.; Zilles, K.; Haas, H.; Lang, F.; Häussinger, D. Phenotype of the taurine transporter knockout Mouse. Methods Enzymol. 2007, 428, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Oishi, S.; Takai, M.; Kimura, Y.; Uozumi, Y.; Fujio, Y.; Schaffer, S.W.; Azuma, J. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J. Biomed. Sci. 2010, 17, S20. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Yoshikawa, N.; Inui, T.; Miyazaki, N.; Schaffer, S.W.; Azuma, J. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS ONE 2014, 9, e107409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Hanahata, Y.; Kine, K.; Murakami, S.; Schaffer, S.W. Tissue taurine depletion induces profibrotic pattern of gene expression and causes aging-related cardiac fibrosis in heart in mice. Biol. Pharm. Bull. 2018, 41, 1561–1566. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, H.C.; Davis, J.M.; Himwich, W.A. Developmental changes in mouse brain: Weight, water content and free amino acids. J. Neurochem. 1968, 15, 917–923. [Google Scholar] [CrossRef]
- Benítez-Diaz, P.; Miranda-Contreras, L.; Mendoza-Briceño, R.V.; Peña-Contreras, Z.; Palacios-Prü, E. Prenatal and postnatal contents of amino acid neurotransmitters in mouse parietal cortex. Dev. Neurosci. 2003, 25, 366–374. [Google Scholar] [CrossRef]
- Sergeeva, O.A.; Chepkova, A.N.; Doreulee, N.; Eriksson, K.S.; Poelchen, W.; Mönnighoff, I.; Heller-Stilb, B.; Warskulat, U.; Häussinger, D.; Haas, H.L. Taurine-induced long-lasting enhancement of synaptic transmission in mice: Role of transporters. J. Physiol. 2003, 550, 911–919. [Google Scholar] [CrossRef]
- Neuringer, M.; Sturman, J. Visual acuity loss in rhesus monkey infants fed a taurine-free human infant formula. J. Neurosci. Res. 1987, 18, 602–614. [Google Scholar] [CrossRef]
- Neuringer, M.; Imaki, H.; Sturman, J.; Moretz, R.; Wisniewski, H. Abnormal visual acuity and retinal morphology in rhesus monkeys fed a taurine-free diet during the first three postnatal months. Adv. Exp. Med. Biol. 1987, 217, 125–134. [Google Scholar] [PubMed]
- Kilb, W.; Fukuda, A. Taurine as an essential neuromodulator during perinatal cortical development. Front. Cell. Neurosci. 2017, 11, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukawa, T.; Yamada, J.; Akita, T.; Matsushima, Y.; Yanagawa, Y.; Fukuda, A. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex. Front. Cell. Neurosci. 2014, 8, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tochitani, S.; Furukawa, T.; Bando, R.; Kondo, S.; Ito, T.; Matsushima, Y.; Kojima, T.; Matsuzaki, H.; Fukuda, A. GABAA receptors and maternally derived raurine regulate the temporal specification of progenitors of excitatory glutamatergic neurons in the mouse developing Cortex. Cereb. Cortex 2021, 31, 4554–4575. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Furukawa, T.; Kumada, T.; Yamada, J.; Wang, T.; Inoue, R.; Fukuda, A. Taurine inhibits K+-Cl− cotransporter KCC2 to regulate embryonic Cl− homeostasis via with-no-lysine (WNK) protein kinase signaling pathway. J. Biol. Chem. 2012, 287, 20839–20850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warskulat, U.; Flögel, U.; Jacoby, C.; Hartwig, H.G.; Thewissen, M.; Merx, M.W.; Molojavyi, A.; Heller-Stilb, B.; Schrader, J.; Häussinger, D. Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J. 2004, 18, 577–579. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Yoshikawa, N.; Schaffer, S.W.; Azuma, J. Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice. J. Amino Acids 2014, 2014, 964680. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Nakanishi, Y.; Yamaji, N.; Murakami, S.; Schaffer, S.W. Induction of growth differentiation factor 15 in skeletal muscle of old taurine transporter knockout mouse. Biol. Pharm. Bull. 2018, 41, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Yoshikawa, N.; Ito, H.; Schaffer, S.W. Impact of taurine depletion on glucose control and insulin secretion in mice. J. Pharmacol. Sci. 2015, 129, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Murakami, S. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci. 2017, 186, 80–86. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Li, B.Y.; Peng, W.Q.; Guo, L.; Tang, Q.Q. Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. J. Biol. Chem. 2019, 294, 15014–15024. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Choi, M. Relation of taurine intake during pregnancy and newborns’ growth. Adv. Exp. Med. Biol. 2019, 1155, 283–292. [Google Scholar] [PubMed]
- Filgueiras, G.B.; Carvalho-Netto, E.F.; Estanislau, C. Aversion in the elevated plus-maze: Role of visual and tactile cues. Behav. Process. 2014, 107, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Schousboe, A. Taurine interaction with neurotransmitter receptors in the CNS: An update. Neurochem. Res. 2005, 30, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.C.; Liu, X.; Kriegstein, A.R. Nonsynaptic glycine receptor activation during early neocortical development. Neuron 1998, 20, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Palackal, T.; Moretz, R.; Wisniewski, H.; Sturman, J.A. Abnormal visual cortex development in the kitten associated with maternal dietary taurine deprivation. J. Neurosci. Res. 1986, 15, 223–239. [Google Scholar] [CrossRef]
- Sturman, J.A.; Moretz, R.C.; French, J.H.; Wisniewski, H.M. Taurine deficiency in the developing cat: Persistence of the cerebellar external granule cell layer. J. Neurosci. Res. 1985, 13, 405–416. [Google Scholar] [CrossRef]
- Shivaraj, M.C.; Marcy, G.; Low, G.; Ryu, J.R.; Zhao, X.; Rosales, F.J.; Goh, E.L.K. Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS ONE 2012, 7, e42935. [Google Scholar] [CrossRef]
- Jia, F.; Yue, M.; Chandra, D.; Keramidas, A.; Goldstein, P.A.; Homanics, G.E.; Harrison, N.L. Taurine is a potent activator of extrasynaptic GABAA receptors in the thalamus. J. Neurosci. 2008, 28, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Sergeeva, O.A.; Fleischer, W.; Chepkova, A.N.; Warskulat, U.; Häussinger, D.; Siebler, M.; Haas, H.L. GABAA-receptor modification in taurine transporter knockout mice causes striatal disinhibition. J. Physiol. 2007, 585, 539–548. [Google Scholar] [CrossRef]
- Harding, N.J.; Davies, W.E. Cellular localisation of taurine in the organ of Corti. Hear. Res. 1993, 65, 211–215. [Google Scholar] [CrossRef]
- Palkovits, M.; Elekes, I.; Láng, T.; Patthy, A. Taurine levels in discrete brain nuclei of rats. J. Neurochem. 1986, 47, 1333–1335. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.C.; Godfrey, D.A. Cochlear damage affects neurotransmitter chemistry in the central auditory system. Front. Neurol. 2014, 5, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Ding, D.; Müller, M.; Pfister, M.; Warskulat, U.; Häussinger, D.; Salvi, R. Central auditory nerve degeneration in knockout mice lacking the taurine transporter. In Proceedings of the 28th Annual Meeting of the Association for Research in Otolaryngology, New Orleans, LA, USA, 19–24 February 2005. [Google Scholar]
- Xu, H.; Wang, W.; Tang, Z.Q.; Xu, T.L.; Chen, L. Taurine acts as a glycine receptor agonist in slices of rat inferior colliculus. Hear. Res. 2006, 220, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Song, N.Y.; Shi, H.B.; Li, C.Y.; Yin, S.K. Interaction between taurine and GABAA/glycine receptors in neurons of the rat anteroventral cochlear nucleus. Brain Res. 2012, 1472, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Du, T.; Li, C.; Yang, G. STAT3 phosphorylation in central leptin resistance. Nutr. Metab. 2021, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Douros, J.D.; Baltzegar, D.A.; Reading, B.J.; Seale, A.P.; Lerner, D.T.; Gordon Grau, E.; Borski, R.J. Leptin stimulates cellular glycolysis through a STAT3 dependent mechanism in Tilapia. Front. Endocrinol. 2018, 9, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Wu, G.; Feng, Y.; Lv, Q.; Lin, S.; Hu, J. Effects of taurine on male reproduction in rats of different ages. J. Biomed. Sci. 2010, 17, S9. [Google Scholar] [CrossRef] [Green Version]
- Dawson, R., Jr.; Biasetti, M.; Messina, S.; Dominy, J. The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids 2002, 22, 309–324. [Google Scholar] [CrossRef]
- Ito, T.; Okazaki, K.; Nakajima, D.; Shibata, D.; Murakami, S.; Schaffer, S. Mass spectrometry-based metabolomics to identify taurine-modified metabolites in heart. Amino Acids 2018, 50, 117–124. [Google Scholar] [CrossRef]
- Ito, T.; Murakami, S.; Schaffer, S. Pathway analysis of a transcriptome and metabolite profile to elucidate a compensatory mechanism for taurine deficiency in the heart of taurine transporter knockout mice. J 2018, 1, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Guadagnin, E.; Mázala, D.; Chen, Y.W. STAT3 in skeletal muscle function and disorders. Int. J. Mol. Sci. 2018, 19, 2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, E.; Tanihata, J.; Iwamura, A.; Takeda, S.; Hayashi, Y.K.; Matsuda, R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet. Muscle 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, A.M.; Wuebbles, R.D.; Sarathy, A.; Fontelonga, T.M.; Deries, M.; Burkin, D.J.; Thorsteinsdóttir, S. Impaired fetal muscle development and JAK-STAT activation mark disease onset and progression in a mouse model for merosin-deficient congenital muscular dystrophy. Hum. Mol. Genet. 2017, 26, 2018–2033. [Google Scholar] [CrossRef]
Gene Type | No. of Mice Showed Startle Response (%) | ||||||
---|---|---|---|---|---|---|---|
60 dB | 70 dB | 80 dB | 90 dB | 100 dB | 110 dB | 120 dB | |
WT | 0/0(0%) | 0/0(0%) | 0/0(0%) | 3/6(50%) | 6/6(100%) | 6/6(100%) | 6/6(100%) |
TauT−/− | 0/0(0%) | 0/0(0%) | 0/0(0%) | 0/0(0%) | 0/0(0%) | 0/0(0%) | 0/0(0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, M.; Ito, T.; Fukuda, A. Effects of Taurine Depletion on Body Weight and Mouse Behavior during Development. Metabolites 2022, 12, 631. https://doi.org/10.3390/metabo12070631
Watanabe M, Ito T, Fukuda A. Effects of Taurine Depletion on Body Weight and Mouse Behavior during Development. Metabolites. 2022; 12(7):631. https://doi.org/10.3390/metabo12070631
Chicago/Turabian StyleWatanabe, Miho, Takashi Ito, and Atsuo Fukuda. 2022. "Effects of Taurine Depletion on Body Weight and Mouse Behavior during Development" Metabolites 12, no. 7: 631. https://doi.org/10.3390/metabo12070631
APA StyleWatanabe, M., Ito, T., & Fukuda, A. (2022). Effects of Taurine Depletion on Body Weight and Mouse Behavior during Development. Metabolites, 12(7), 631. https://doi.org/10.3390/metabo12070631