Profiling of Metabolic Differences between Hematopoietic Stem Cells and Acute/Chronic Myeloid Leukemia
Abstract
:1. Introduction
2. Results
2.1. Metabolic Differences between HSCs and Leukemia Cell Lines
2.2. Hierarchical Clustering between HSCs and Leukemia Cell Lines
2.3. Metabolic Differences Observed between HSCs and Leukemia Cell Lines Suggest Novel Putative Metabolic Biomarkers
3. Discussions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture
4.3. Sample Collection and Preparation for Metabolite Analysis
4.4. Gas Chromatography–Time-of-Flight Mass Spectrometry Analysis
4.5. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leymarie, V.; Galoisy, A.C.; Falkenrodt, A.; Lessard, M. Diagnosis of myeloid hematologic malignancies: Contributions of the 2001 World Health Organization (WHO) classification. Ann. Biol. Clin. (Paris) 2004, 62, 513–520. [Google Scholar] [PubMed]
- McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr. 2016, 7, 418–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohi, O.; Kanerva, J.; Taskinen, M.; Harila-Saari, A.; Rounioja, S.; Jahnukainen, K.; Lähteenmäki, P.; Vettenranta, K. Childhood leukemia. Duodecim 2013, 129, 939–946. [Google Scholar] [PubMed]
- Castro, I.; Sampaio-Marques, B.; Ludovico, P. Targeting Metabolic Reprogramming in Acute Myeloid Leukemia. Cells 2019, 8, 967. [Google Scholar] [CrossRef] [Green Version]
- Flier, J.S.; Mueckler, M.M.; Usher, P.; Lodish, H.F. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 1987, 235, 1492–1495. [Google Scholar] [CrossRef]
- Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Rev. Cancer 2016, 16, 635–649. [Google Scholar] [CrossRef] [Green Version]
- Ashton, T.M.; McKenna, W.G.; Kunz-Schughart, L.A.; Higgins, G.S. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clin. Cancer Res. 2018, 24, 2482–2490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Sun, H.; Xu, H.; Qiu, S.; Wang, X. Cell metabolomics. OMICS 2013, 17, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward personalized medicine. Mass Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; He, X.; Jia, W.; Li, H. Novel Applications of Metabolomics in Personalized Medicine: A Mini-Review. Molecules 2017, 22, 1173. [Google Scholar] [CrossRef]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell 2008, 13, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Innao, V.; Gerace, D.; Bianco, O.; Musolino, C. The metabolomic signature of hematologic malignancies. Leuk. Res. 2016, 49, 22–35. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, Z.M.; Ma, P.; Ji, H.C.; Lu, H.M. GC-MS profiling of leukemia cells: An optimized preparation protocol for the intracellular metabolome. Anal. Methods 2018, 10, 1266–1274. [Google Scholar] [CrossRef]
- Son, S.Y.; Park, Y.J.; Jung, E.S.; Singh, D.; Lee, Y.W.; Kim, J.G.; Lee, C.H. Integrated Metabolomics and Transcriptomics Unravel the Metabolic Pathway Variations for Different Sized Beech Mushrooms. Int. J. Mol. Sci. 2019, 20, 6007. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, A.K.; DeBerardinis, R.J. Applications of metabolomics to study cancer metabolism. Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 2–14. [Google Scholar] [CrossRef]
- Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Yamabe, M.; Yamaguchi, Y.; Kobayashi, Y.; Konno, T.; Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer 1980, 26, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Chanput, W.; Mes, J.J.; Wichers, H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014, 23, 37–45. [Google Scholar] [CrossRef]
- Sundström, C.; Nilsson, K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int. J. Cancer 1976, 17, 565–577. [Google Scholar] [CrossRef]
- Strefford, J.C.; Foot, N.J.; Chaplin, T.; Neat, M.J.; Oliver, R.T.; Young, B.D.; Jones, L.K. The characterisation of the lymphoma cell line U937, using comparative genomic hybridisation and multi-plex FISH. Cytogenet. Cell Genet. 2001, 94, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Prange, K.H.M.; Mandoli, A.; Kuznetsova, T.; Wang, S.Y.; Sotoca, A.M.; Marneth, A.E.; van der Reijden, B.A.; Stunnenberg, H.G.; Martens, J.H.A. MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene 2017, 36, 3346–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shipley, J.M.; Sheppard, D.M.; Sheer, D. Karyotypic analysis of the human monoblastic cell line U937. Cancer Genet. Cytogenet. 1988, 30, 277–284. [Google Scholar] [CrossRef]
- Mrózek, K.; Tanner, S.M.; Heinonen, K.; Bloomfield, C.D. Molecular cytogenetic characterization of the KG-1 and KG-1a acute myeloid leukemia cell lines by use of spectral karyotyping and fluorescence in situ hybridization. Genes Chromosomes Cancer 2003, 38, 249–252. [Google Scholar] [CrossRef]
- Lozzio, C.B.; Lozzio, B.B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975, 45, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Grosveld, G.; Verwoerd, T.; van Agthoven, T.; de Klein, A.; Ramachandran, K.L.; Heisterkamp, N.; Stam, K.; Groffen, J. The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/c-abl transcript. Mol. Cell Biol. 1986, 6, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Kreitz, J.; Schönfeld, C.; Seibert, M.; Stolp, V.; Alshamleh, I.; Oellerich, T.; Steffen, B.; Schwalbe, H.; Schnütgen, F.; Kurrle, N.; et al. Metabolic Plasticity of Acute Myeloid Leukemia. Cells 2019, 8, 805. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.Y.; Yang, Y.J.; Fu, C.M.; Xiang, L.L.; Wang, Q.; Li, X.L. Pathways involved in the evolution of leukemic stem cells. Eur. Rev. Med. Pharm. Sci. 2015, 19, 1356–1363. [Google Scholar]
- Li, X.L.; Xue, Y.; Yang, Y.J.; Zhang, C.X.; Wang, Y.; Duan, Y.Y.; Meng, Y.N.; Fu, J. Hematopoietic stem cells: Cancer involvement and myeloid leukemia. Eur. Rev. Med. Pharm. Sci. 2015, 19, 1829–1836. [Google Scholar]
- Chopra, M.; Bohlander, S.K. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer 2019, 58, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Hurren, R.; MacLean, N.; Gronda, M.; Jitkova, Y.; Sukhai, M.A.; Minden, M.D.; Schimmer, A.D. Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells. Apoptosis 2015, 20, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, M.; Lee, E.; Eiden, M.; Bahlo, A.; Shi, Y.; Ceddia, R.B.; Baccei, C.; Prasit, P.; Spaner, D.E. A role for oleoylethanolamide in chronic lymphocytic leukemia. Leukemia 2014, 28, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy-Kanniappan, S.; Geschwind, J.F. Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol. Cancer 2013, 12, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, T.W.; Kang, H.S.; Kim, T.H.; Kwon, J.H.; Kim, H.K.; Ryu, A.; Jeon, H.; Han, J.; Broxmeyer, H.E.; Hwang, Y.; et al. MiR-9 Controls Chemotactic Activity of Cord Blood CD34⁺ Cells by Repressing CXCR4 Expression. Int. J. Stem Cells 2018, 11, 187–195. [Google Scholar] [CrossRef] [Green Version]
No. | Ret (min) a | VIP1 | VIP2 | Tentative Identifications b | Unique Mass (m/z) | MS Fragment Pattern (m/z) | REF c |
---|---|---|---|---|---|---|---|
Organic acids | |||||||
1 | 5.13 | 0.78 | 0.51 | Lactic acid | 117 | 73, 147, 117, 75, 66, 59, 148, 191 | STD/MS |
2 | 5.96 | 1.34 | 1.04 | Pyruvic acid | 220 | 73, 147, 100, 133, 59, 72, 86, 220 | STD/MS |
3 | 7.61 | 1.80 | 1.27 | Succinic acid | 247 | 73, 147, 75, 247, 59, 77, 69, 50 | STD/MS |
4 | 9.19 | 0.35 | 1.67 | Malic acid | 233 | 73, 147, 55, 75, 52, 133, 156, 233 | STD/MS |
5 | 11.76 | 0.78 | 1.71 | Citric acid | 273 | 73, 147, 75, 273, 74, 50, 149, 133 | STD/MS |
Amino acids | |||||||
6 | 7.59 | 1.29 | 1.11 | Glycine | 174 | 73, 174, 147, 341, 86, 59, 77, 100 | STD/MS |
7 | 8.08 | 1.61 | 1.15 | Serine | 204 | 73, 100, 204, 119, 188, 218, 193 | STD/MS |
8 | 8.33 | 0.80 | 1.37 | Threonine | 219 | 73, 58, 174, 57, 147, 75, 86, 219 | STD/MS |
9 | 8.66 | 1.01 | 1.55 | β-Alanine | 248 | 73, 174, 147, 248, 86, 59, 100, 133 | STD/MS |
10 | 9.45 | 1.09 | 1.08 | Aspartic acid | 232 | 73, 156, 232, 147, 100, 75, 79, 52 | STD/MS |
11 | 9.51 | 1.17 | 1.49 | 5-oxo-proline | 156 | 156, 73, 147, 75, 59, 230, 258 | STD/MS |
12 | 11.73 | 1.57 | 1.11 | Ornithine | 142 | 73, 142, 174, 147, 59, 74, 86, 100 | STD/MS |
13 | 12.42 | 1.16 | 1.30 | Lysine | 156 | 73, 75, 147, 59, 174, 156, 103 | STD/MS |
Sugars and sugar alcohols | |||||||
14 | 12.18 | 0.79 | 1.56 | Fructose | 217 | 73, 103, 217, 147, 74, 307, 133, 117 | STD/MS |
15 | 12.37 | 1.56 | 1.26 | Glucose | 160 | 73, 147, 205, 160, 103, 319, 74, 129 | STD/MS |
16 | 12.63 | 1.86 | 1.23 | Saccharide 1 | 319 | 73, 147, 103, 217, 205, 319, 117, 129 | MS |
17 | 13.20 | 1.09 | 1.49 | Saccharide 2 | 204 | 73, 204, 147, 75, 117, 217, 205, 129 | MS |
18 | 13.62 | 0.89 | 1.67 | myo-Inositol | 217 | 73, 147, 217, 191, 305, 129, 133 | STD/MS |
Fatty acids and lipids | |||||||
19 | 11.51 | 1.56 | 1.12 | Phosphorylethanolamine | 299 | 73, 100, 59, 299, 172, 147, 74, 114 | MS |
20 | 11.84 | 1.69 | 1.13 | Myristic acid | 285 | 73, 75, 117, 129, 132, 55, 145, 131 | STD/MS |
21 | 13.14 | 1.80 | 1.21 | Palmitic acid | 313 | 73, 75, 117, 132, 129, 55, 145, 131 | STD/MS |
22 | 14.16 | 1.47 | 0.98 | Linoleic acid | 337 | 75, 73, 67, 55, 81, 79, 129, 117, 337 | STD/MS |
23 | 14.19 | 1.70 | 1.36 | Oleic acid | 339 | 75, 73, 55, 117, 129, 67, 145, 339 | STD/MS |
24 | 14.33 | 1.84 | 1.27 | Stearic acid | 341 | 73, 75, 117, 132, 129, 131, 145, 341 | STD/MS |
25 | 16.21 | 1.47 | 1.55 | α-Palmitin | 371 | 73, 57, 55, 147, 75, 69, 129, 371 | MS |
26 | 19.74 | 1.35 | 1.26 | Cholesterol | 129 | 129, 73, 75, 55, 57, 81, 95, 105 | STD/MS |
Electron Transport Chains | |||||||
27 | 5.65 | 1.15 | 0.91 | Hydroxylamine | 146 | 73, 133, 146, 59, 119, 86, 147, 130 | STD/MS |
28 | 7.31 | 1.65 | 1.11 | Phosphoric acid | 299 | 73, 299, 133, 211, 300, 207, 193 | STD/MS |
29 | 7.56 | 0.90 | 0.65 | Cortisol | 256 | 73, 107, 77, 55, 256, 69, 84, 140 | STD/MS |
Etc. | |||||||
30 | 6.35 | 1.03 | 1.50 | N.I. 1 | 184 | 73, 58, 69, 228, 110, 77, 134, 184 | ‒ |
31 | 6.66 | 1.07 | 0.77 | N.I. 2 | 228 | 73, 69, 58, 228, 110, 77, 134, 184 | ‒ |
32 | 7.87 | 0.89 | 0.71 | N.I. 3 | 184 | 73, 184, 134, 59, 77, 86, 100, 69 | ‒ |
33 | 9.14 | 1.33 | 1.58 | N.I. 4 | 281 | 73, 147, 281, 327, 74, 282, 59, 415 | ‒ |
34 | 10.48 | 1.32 | 1.61 | N.I. 5 | 355 | 73, 355, 147, 221, 281, 74, 356 | ‒ |
35 | 11.63 | 1.49 | 1.69 | N.I. 6 | 429 | 73, 147, 221, 429, 74, 355, 207 | ‒ |
36 | 12.66 | 1.44 | 1.67 | N.I. 7 | 281 | 73, 147, 281, 221, 74, 207, 282, 341 | ‒ |
37 | 13.43 | 1.15 | 0.82 | N.I. 8 | 136 | 55, 69, 122, 56, 54, 67, 83, 136 | ‒ |
38 | 14.45 | 1.43 | 1.59 | N.I. 9 | 355 | 73, 147, 221, 355, 281, 429, 207 | ‒ |
39 | 15.76 | 1.43 | 1.08 | N.I. 10 | 55 | 55, 69, 57, 83, 54, 56, 67, 122 | ‒ |
40 | 15.97 | 1.49 | 1.56 | N.I. 11 | 355 | 73, 147, 221, 281, 355, 207, 429 | ‒ |
41 | 16.66 | 1.53 | 1.59 | N.I. 12 | 221 | 73, 147, 221, 355, 281, 207, 429 | ‒ |
42 | 17.30 | 1.50 | 1.61 | N.I. 13 | 221 | 73, 147, 221, 281, 355, 207, 74 | ‒ |
43 | 17.35 | 1.12 | 0.99 | N.I. 14 | 131 | 75, 131, 55, 144, 116, 128, 69, 394 | ‒ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, B.H.; Son, S.Y.; Kim, H.K.; Ha, T.W.; Im, J.S.; Ryu, A.; Jeon, H.; Chung, H.Y.; Oh, J.S.; Lee, C.H.; et al. Profiling of Metabolic Differences between Hematopoietic Stem Cells and Acute/Chronic Myeloid Leukemia. Metabolites 2020, 10, 427. https://doi.org/10.3390/metabo10110427
Song BH, Son SY, Kim HK, Ha TW, Im JS, Ryu A, Jeon H, Chung HY, Oh JS, Lee CH, et al. Profiling of Metabolic Differences between Hematopoietic Stem Cells and Acute/Chronic Myeloid Leukemia. Metabolites. 2020; 10(11):427. https://doi.org/10.3390/metabo10110427
Chicago/Turabian StyleSong, Byung Hoo, Su Young Son, Hyun Kyu Kim, Tae Won Ha, Jeong Suk Im, Aeli Ryu, Hyeji Jeon, Hee Yong Chung, Jae Sang Oh, Choong Hwan Lee, and et al. 2020. "Profiling of Metabolic Differences between Hematopoietic Stem Cells and Acute/Chronic Myeloid Leukemia" Metabolites 10, no. 11: 427. https://doi.org/10.3390/metabo10110427