Next Article in Journal
The Antimethanogenic Nitrocompounds Can be Cleaved into Nitrite by Rumen Microorganisms: A Comparison of Nitroethane, 2-Nitroethanol, and 2-Nitro-1-propanol
Next Article in Special Issue
On the Inverse Correlation of Protein and Oil: Examining the Effects of Altered Central Carbon Metabolism on Seed Composition Using Soybean Fast Neutron Mutants
Previous Article in Journal
Generation of a Collision Cross Section Library for Multi-Dimensional Plant Metabolomics Using UHPLC-Trapped Ion Mobility-MS/MS
Previous Article in Special Issue
Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thaliana
Open AccessArticle

13C-Metabolic Flux Analysis in Developing Flax (Linum usitatissinum L.) Embryos to Understand Storage Lipid Biosynthesis

1
Alliance Sorbonne Université, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France
2
Alliance Sorbonne Université, EA 4297 TIMR, Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France
3
Alliance Sorbonne Université, Laboratoire Roberval, FRE UTC CNRS 2012, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France
*
Author to whom correspondence should be addressed.
Metabolites 2020, 10(1), 14; https://doi.org/10.3390/metabo10010014
Received: 26 November 2019 / Revised: 20 December 2019 / Accepted: 21 December 2019 / Published: 24 December 2019
(This article belongs to the Special Issue Metabolomic and Flux Analysis in Plants)
Flax (Linum usitatissinum L.) oil is an important source of α-linolenic (C18:3 ω-3). This polyunsaturated fatty acid is well known for its nutritional role in human and animal diets. Understanding storage lipid biosynthesis in developing flax embryos can lead to an increase in seed yield via marker-assisted selection. While a tremendous amount of work has been done on different plant species to highlight their metabolism during embryo development, a comprehensive analysis of metabolic flux in flax is still lacking. In this context, we have utilized in vitro cultured developing embryos of flax and determined net fluxes by performing three complementary parallel labeling experiments with 13C-labeled glucose and glutamine. Metabolic fluxes were estimated by computer-aided modeling of the central metabolic network including 11 cofactors of 118 reactions of the central metabolism and 12 pseudo-fluxes. A focus on lipid storage biosynthesis and the associated pathways was done in comparison with rapeseed, arabidopsis, maize and sunflower embryos. In our hands, glucose was determined to be the main source of carbon in flax embryos, leading to the conversion of phosphoenolpyruvate to pyruvate. The oxidative pentose phosphate pathway (OPPP) was identified as the producer of NADPH for fatty acid biosynthesis. Overall, the use of 13C-metabolic flux analysis provided new insights into the flax embryo metabolic processes involved in storage lipid biosynthesis. The elucidation of the metabolic network of this important crop plant reinforces the relevance of the application of this technique to the analysis of complex plant metabolic systems. View Full-Text
Keywords: parallel labeling experiment; metabolic flux analysis; flax; embryo parallel labeling experiment; metabolic flux analysis; flax; embryo
Show Figures

Figure 1

MDPI and ACS Style

Acket, S.; Degournay, A.; Rossez, Y.; Mottelet, S.; Villon, P.; Troncoso-Ponce, A.; Thomasset, B. 13C-Metabolic Flux Analysis in Developing Flax (Linum usitatissinum L.) Embryos to Understand Storage Lipid Biosynthesis. Metabolites 2020, 10, 14.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop