Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review
Abstract
1. Introduction
2. Methodology
2.1. Mechanism of Action
2.2. Electrode Placements
Electrode Configuration
2.3. Waveform
2.4. Stimulus Amplitude
2.5. Pulse Width
2.6. Frequency
2.7. Carrier Frequency
3. Summary/Conclusions
Funding
Conflicts of Interest
References
- Spinal Cord Injury Facts and Figures at a Glance 2020 SCI Data Sheet. 2020. Available online: www.msktc.org/sci/model-system-centers (accessed on 13 April 2022).
- Figueiredo, N.; Figueiredo, I.E.; Resnick, D. Tetraplegia or paraplegia with brachial diparesis? What is the most appropriate designation for the motor deficit in patients with lower cervical spinal cord injury? Neurol. Sci. 2013, 34, 143–147. [Google Scholar] [CrossRef]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications in Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin. Orthop. Relat. Res. 2017, 475, 1499–1504. [Google Scholar] [CrossRef]
- International Neuromodulation Society. Available online: https://www.neuromodulation.com/learn-more (accessed on 12 April 2022).
- Karamian, B.A.; Siegel, N.; Nourie, B.; Serruya, M.D.; Heary, R.F.; Harrop, J.S.; Vaccaro, A.R. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J. Orthop. Traumatol. 2022, 23, 1–17. [Google Scholar] [CrossRef]
- Rahman, M.d.A.; Tharu, N.S.; Gustin, S.M.; Zheng, Y.P.; Alam, M. Trans-Spinal Electrical Stimulation Therapy for Functional Rehabilitation after Spinal Cord Injury: Review. J. Clin. Med. 2022, 11, 1550. [Google Scholar] [CrossRef]
- Benavides, F.D.; Jo, H.J.; Lundell, H.; Edgerton, V.R.; Gerasimenko, Y.; Perez, M.A. Cortical and subcortical effects of transcutaneous spinal cord stimulation in humans with tetraplegia. J. Neurosci. 2020, 40, 2633–2643. [Google Scholar] [CrossRef]
- Freyvert, Y.; Yong, N.A.; Morikawa, E.; Zdunowski, S.; Sarino, M.E.; Gerasimenko, Y.; Edgerton, V.R.; Lu, D.C. Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Inanici, F.; Samejima, S.; Gad, P.; Edgerton, V.R.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1272–1278. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Hofer, C.; Kern, H.; Danner, S.M.; Mayr, W.; Dimitrijevic, M.R.; Minassian, K. Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed. Tech. 2013, 58 (Suppl. S1A). [Google Scholar] [CrossRef]
- Gad, P.; Gerasimenko, Y.; Zdunowski, S.; Turner, A.; Sayenko, D.; Lu, D.C.; Edgerton, V.R. Weight bearing over-ground stepping in an exoskeleton with non-invasive spinal cord neuromodulation after motor complete paraplegia. Front. Neurosci. 2017, 11, 333. [Google Scholar] [CrossRef]
- Gad, P.; Lee, S.; Terrafranca, N.; Zhong, H.; Turner, A.; Gerasimenko, Y.; Edgerton, V.R. Non-invasive activation of cervical spinal networks after severe paralysis. J. Neurotrauma 2018, 35, 2145–2158. [Google Scholar] [CrossRef]
- Minassian, K.; Hofstoetter, U.S.; Danner, S.M.; Mayr, W.; Bruce, J.A.; McKay, W.B.; Tansey, K.E. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals. Neurorehabil. Neural Repair. 2016, 30, 233–243. [Google Scholar] [CrossRef]
- Shapkova, E.Y.; Pismennaya, E.V.; Emelyannikov, D.V.; Ivanenko, Y. Exoskeleton Walk Training in Paralyzed Individuals Benefits from Transcutaneous Lumbar Cord Tonic Electrical Stimulation. Front. Neurosci. 2020, 14, 416. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-K.; Levine, J.M.; Wecht, J.R.; Maher, M.T.; Limonta, J.M.; Saeed, S.; Santiago, T.M.; Bailey, E.; Kastuar, S.; Guber, K.S.; et al. Posteroanterior cervical transcutaneous spinal stimulation targets ventral and dorsal nerve roots. Clin. Neurophysiol. 2020, 131, 451–460. [Google Scholar] [CrossRef]
- Kumru, H.; Rodríguez-Cañón, M.; Edgerton, V.; García, L.; Soriano, I.; Opisso, E.; Gerasimenko, Y.; Navarro, X.; García-Alías, G. Transcutaneous electrical neuromodulation of the cervical spinal cord depends both on the stimulation intensity and the degree of voluntary activity for training. A pilot study. J. Clin. Med. 2021, 10, 3278. [Google Scholar] [CrossRef] [PubMed]
- Al’joboori, Y.; Massey, S.J.; Knight, S.L.; de Donaldson, N.; Duffell, L.D. The effects of adding transcutaneous spinal cord stimulation (TSCS) to sit-to-stand training in people with spinal cord injury: A pilot study. J. Clin. Med. 2020, 9, 2765. [Google Scholar] [CrossRef]
- Milosevic, M.; Masugi, Y.; Sasaki, A.; Sayenko, D.G.; Nakazawa, K. On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects. J. Neurophysiol. 2019, 121, 1672–1679. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Rath, M.; Ferguson, A.; Burdick, J.W.; Havton, L.A.; Edgerton, V.R.; Gerasimenko, Y.P. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J. Neurotrauma 2019, 36, 1435–1450. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Reggie Edgerton, V. Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. Med. 2015, 58, 225–231. [Google Scholar] [CrossRef]
- Parhizi, B.; Barss, T.S.; Mushahwar, V.K. Simultaneous Cervical and Lumbar Spinal Cord Stimulation Induces Facilitation of Both Spinal and Corticospinal Circuitry in Humans. Front. Neurosci. 2021, 15, 5103. [Google Scholar] [CrossRef]
- Taylor, C.; McHugh, C.; Mockler, D.; Minogue, C.; Reilly, R.B.; Fleming, N. Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: A methodological review. PLoS ONE 2021, 16, 260166. [Google Scholar] [CrossRef]
- Bunday, K.L.; Perez, M.A. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr. Biol. 2012, 22, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Brownstone, R.M. Mechanisms of spinal cord stimulation for the treatment of pain: Still in the dark after 50 years. Eur. J. Pain 2019, 23, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Knikou, M. Remodeling brain activity by repetitive cervicothoracic transspinal stimulation after human spinal cord injury. Front. Neurol. 2017, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Inanici, F.; Brighton, L.N.; Samejima, S.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function after Spinal Cord Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; de Freitas, R.M.; Sayenko, D.G.; Masugi, Y.; Nomura, T.; Nakazawa, K.; Milosevic, M. Low-intensity and short-duration continuous cervical transcutaneous spinal cord stimulation intervention does not prime the corticospinal and spinal reflex pathways in able-bodied subjects. J. Clin. Med. 2021, 10, 3633. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, R.M.; Sasaki, A.; Sayenko, D.G.; Masugi, Y.; Nomura, T.; Nakazawa, K.; Molesiv, M. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. J. Appl. Physiol. 2021, 131, 746–759. [Google Scholar] [CrossRef]
- Gorodnichev, R.M.; Pivovarova, E.A.; Puhov, A.; Moiseev, S.A.; Savochin, A.; Moshonkina, T.R.; Chsherbakova, N.A.; Kilimnik, V.A.; Selionov, V.; Kozlovskaya, I.B.; et al. Transcutaneous electrical stimulation of the spinal cord: A noninvasive tool for the activation of stepping pattern generators in humans. Hum. Physiol. 2012, 38, 158–167. [Google Scholar] [CrossRef]
- Krenn, M.; Toth, A.; Danner, S.M.; Hofstoetter, U.S.; Minassian, K.; Mayr, W. Selectivity of transcutaneous stimulation of lumbar posterior roots at different spinal levels in humans. Biomed. Tech. 2013, 58 (Suppl. S1A). [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; McKay, W.B.; Tansey, K.E.; Mayr, W.; Kern, H.; Minassian, K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J. Spinal Cord Med. 2014, 37, 202–211. [Google Scholar] [CrossRef]
- Kaur Bedi, P.; Kaur, P.; Arumugam, N. Activity Based Therapy and Surface Spinal Stimulation for Recovery of Walking In individual with Traumatic Incomplete Spinal Cord Injury: A Case Report. Available online: http://www.recentscientific.com (accessed on 28 March 2022).
- Sutor, T.W.; Ghatas, M.P.; Goetz, L.L.; Lavis, T.D.; Gorgey, A.S. Exoskeleton Training and Trans-Spinal Stimulation for Physical Activity Enhancement After Spinal Cord Injury (EXTra-SCI): An Exploratory Study. Front. Rehabil. Sci. 2022, 2, 9422. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Atkinson, D.A.; Floyd, T.C.; Gorodnichev, R.M.; Moshonkina, T.R.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord. Neurosci. Lett. 2015, 609, 229–234. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Gorodnichev, R.; Puhov, A.; Moshonkina, T.; Savochin, A.; Selionov, V.; Roy, R.R.; Lu, D.C.; Edgerton, V.R. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J. Neurophysiol. 2015, 113, 834–842. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Atkinson, D.A.; Dy, C.J.; Gurley, K.M.; Smith, V.L.; Angeli, C.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans. J. Appl. Physiol. 2015, 118, 1364–1374. [Google Scholar] [CrossRef]
- Gerasimenko, Y.P.; Lu, D.C.; Modaber, M.; Zdunowski, S.; Gad, P.; Sayenko, D.G.; Morikawa, E.; Haakana, P.; Ferguson, A.; Roy, R.R.; et al. Noninvasive reactivation of motor descending control after paralysis. J. Neurotrauma 2015, 32, 1968–1980. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur Research Scholar, P.; Professor, A. Published by Exercise Fitness & Health Alliance Article no. 253. J. Exerc. Sci. Physiother. 2016, 12, 69–75. [Google Scholar] [CrossRef]
- McHugh, L.V.; Miller, A.A.; Leech, K.A.; Salorio, C.; Martin, R.H. Feasibility and utility of transcutaneous spinal cord stimulation combined with walking-based therapy for people with motor incomplete spinal cord injury. Spinal Cord Ser Cases 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Manson, G.A.; Calvert, J.S.; Ling, J.; Tychhon, B.; Ali, A.; Sayenko, D.G. The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration. Physiol. Rep. 2020, 8, 14397. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Sayenko, D.; Gad, P.; Kozesnik, J.; Moshonkina, T.; Grishin, A.; Pukhov, A.; Moiseev, S.; Gorodnichev, R.; Selionov, V.; et al. Electrical spinal stimulation, and imagining of lower limb movements to modulate brain-spinal connectomes that control locomotor-like behavior. Front. Physiol. 2018, 9, 1196. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Krenn, M.; Danner, S.M.; Hofer, C.; Kern, H.; McKay, W.B.; Mayr, W.; Minassian, K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif. Org. 2015, 39, E176–E186. [Google Scholar] [CrossRef]
- Samejima, S.; Caskey, C.D.; Inanici, F.; Shrivastav, S.R.; Brighton, L.N.; Pradarelli, J.; Martinez, V.; Steele, K.M.; Saigal, R.; Moritz, C.T. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design. Phys. Ther. 2022, 102, 228. [Google Scholar] [CrossRef]
- Bye, E.A.; Héroux, M.E.; Boswell-Ruys, C.L.; Perez, M.A.; Purcell, M.; Taylor, J.; Lee, B.B.; McCaughey, E.J.; Butler, J.E.; Gandevia, S.C. Transcutaneous spinal cord stimulation combined with locomotor training to improve walking ability in people with chronic spinal cord injury: Study protocol for an international multi-centred double-blinded randomised sham-controlled trial (eWALK). Spinal Cord 2022, 60, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Megía García, A.; Serrano-Muñoz, D.; Taylor, J.; Avendaño-Coy, J.; Gómez-Soriano, J. Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review. Neurorehabil. Neural Repair 2020, 34, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.P.; Eldabe, S.; Buchser, E.; Johanek, L.M.; Guan, Y.; Linderoth, B. Parameters of Spinal Cord Stimulation and Their Role in Electrical Charge Delivery: A Review. Neuromodulation 2016, 19, 373–384. [Google Scholar] [CrossRef] [PubMed]
(a) Electrode characteristics for applications of TSS for motor control in the upper extremities | ||||||
---|---|---|---|---|---|---|
First Author | Year | Demographics | Cathode Size | Cathode Location | Anode Location | Channel Number |
Inanici [9] | 2018 | SCI; ASIA D, C3 | 2.5 cm diameter | One midline at C3–C4 spinous processes; one midline at C6–C7 spinous processes | Bilateral iliac crests | 2 |
Freyvert [8] | 2018 | SCI; ASIA B, C5 and higher | Not reported | Dorsal neck overlying C5 vertebrae | Anterior superior iliac spine bilaterally | 1 |
Benavides [7] | 2020 | SCI; ASIA A–D, C4–C6 | 3.2 cm diameter | Midline C5–C6 between spinous processes | Bilateral iliac crests | 1 |
Murray [25] | 2017 | SCI; ASIA C, C6–7 | 10.2 × 5.1 cm | Midline overlying C5–T2 spinous processes | Bilateral clavicles | 1 |
Inanici [26] | 2021 | SCI; ASIA B–D, C3–C5 | 2.5 cm diameter | Midline above and below injury level | Bilateral iliac crests | 2 |
Gad [12] | 2018 | SCI; ASIA B–C, C7 and higher | 2.0 cm diameter | One midline between C3–C4 spinous processes; one midline between C6–C7 spinous processes | Bilateral iliac crests | 2 |
Wu [15] | 2020 | AB and SCI; C2–C8 | 5 × 10 cm | Midline 4 cm caudal to C7 spinous process, arranged longitudinally | Horizontally over anterior midline with caudal edge 2–3 cm above sternal notch | 1 |
Kumru [16] | 2021 | AB | 2.0 cm diameter | One midline over spinous processes C3–C4; one midline over spinous processes C6–C7 | Bilateral iliac crests | 2 |
Parhizi [21] | 2021 | AB | 2.5 cm diameter | One midline over C3–C4 spinous processes; one midline over C6–C7 spinous processes; one midline over T11 spinous process; one midline over L1 spinous processes | Bilateral iliac crests | 4 |
Sasaki [27] | 2021 | AB | 0.5 × 0.5 cm | Midline over C6 or C7 or T1 spinous processes | Midline on anterior neck | 1 |
de Freitas [28] | 2021 | AB | 5.0 × 5.0 cm | Cathode experiment: over spinous process of C6 vs. C7 vs. T1. Anode experiment: placed at optimum location from cathode experiment | Cathode experiment: midline over anterior neck. Anode experiment: one anode on anterior neck vs. two anodes bilaterally over distal clavicles vs. two anodes bilaterally over iliac crests vs. one anode 4 cm below cathode on posterior neck. | 1 |
Milosevic [18] | 2018 | AB | 5 × 5 cm | Midline between C7–T1 spinous processes | Anterior midline neck | 1 |
(b) Electrode characteristics for applications of TSS for motor control in the lower extremity | ||||||
First Author | Year | Demographics | Cathode Size | Cathode Location | Anode Location | Channel Number |
Gorodnicheva [29] | 2012 | AB | 2.5 cm diameter | Midline between spinous processes T11 and T12 | Bilateral iliac crests | 1 |
Hofstoetter [10] | 2013 | SCI; ASIA D, T9 | 8 × 13 cm | T11/T12 spinous process | Bilaterally over the lower anterior abdomen. | 1 |
Krenn [30] | 2013 | AB | 3 × 12 cm | 8 cm caudal and 4 cm rostral around the interspinous space T11–12 | Bilateral abdomen | 7 |
Hofstoetter [31] | 2014 | SCI; ASIA D, C5–T9 | 5 cm diameter | T11 and T12 spinous processes | Bilaterally over the lower anterior abdomen in symmetry to the umbilicus | 1 |
Bedi [32] | 2015 | SCI; ASIA C, L1 | 4.5 × 9 cm | T10–L1 vertebral level | Not reported | 1 |
Sutor [33] | 2022 | SCI; ASIA A–C, C4–T11 | 10.2 × 17.8 cm | T10/T11 to L4/L5 | Bilateral iliac crests | 1 |
Sayenko [34] | 2015 | AB | 10 mm diameter | Midline spinous processes T10 and L1 | Bilateral iliac crests | 1 and 2 |
Gerasimenko [35] | 2015 | AB | 2.5 cm diameter | Midline at C5, T11, and/or L1spinous processes | Bilateral iliac crests | 3 |
Sayenko [36] | 2015 | AB | 18 mm diameter | Between the spinous processes of T10 –T11, T11–T12, and T12–L1 midline | Bilateral iliac crests | 3 |
Gerasimenko [37] | 2015 | SCI; ASIA A–B | 2.5 cm diameter | Midline between spinous processes T11–T12 or over coccyx | Bilateral iliac crests | 2 |
Minassian [13] | 2016 | SCI; ASIA A | 8 × 13 cm | T11 and T12 spinous processes | Covering the abdomen | 1 |
Bedi [38] | 2016 | SCI; ASIA C, T12–L1 | 4.5 × 9 cm | T10–L1 para-vertebral | Not reported | 1 |
Shapkova [14] | 2020 | SCI; ASIA A–C, C5–L2 | 3 x4 cm | Over T12 vertebra | Centrally over abdomen | 1 |
McHugh [39] | 2020 | SCI; ASIA C–D, C4–T9 | 5 × 10 cm | Between T11–T12 spinous process | Over lower abdomen | 1 |
Al’joboori [17] | 2020 | SCI; ASIA A–D, C5–T10 | 5 × 5 cm | T10/T11 | Over T12/L1 | 1 |
Manson [40] | 2020 | AB | 32 mm diameter | Parallel to the spinous process of L1–L2 vertebrae | Over lower abdomen | 1 |
Sayenko [19] | 2019 | SCI; ASIA A–C, C4–T12 | 3.2 cm diameter | Between spinous process of T11/T12 and L1/L2 | Bilateral iliac crests | 2 |
Gad [11] | 2017 | SCI; ASIA A, T9–L1 | 2.5 cm diameter T11/T12, 5.0 × 10.2 cm rectangle pair at Co1 | T11–T12 midline between spinous processes T11–T12 (Simply T11) or over Co1 | Bilateral iliac crests | 2 |
Gerasimenko [41] | 2018 | AB | 2.5 cm diameter | Between the spinous processes of T11–T12 or L1–L2 | Bilateral iliac crests | 1 |
Hofstoetter [42] | 2015 | SCI; ASIA D, C5–T9 | 5 cm diameter | T11/T12 paraspinally | Paraumblically | 1 |
Samejima [43] | 2022 | SCI; ASIA D, C4–C6 | 2.5 cm diameter | Over midline at C3/C4, C6/C7, T11, and L1 | Bilateral iliac crests | 2 |
Bye [44] | 2022 | SCI; T1–T11 | 5 × 10 cm | L1/L2 | Over lower abdomen | 1 |
Extremity | Threshold Level | First Author | Year | Amplitude Determination | Amplitude |
---|---|---|---|---|---|
Upper Limb | Submotor threshold | Murray [25] | 2017 | Below motor threshold to level that induced bilateral muscle contraction | 68 mA |
Wu [15] | 2020 | 80–200% of resting motor Threshold | 102 mA (80% of the motor threshold) | ||
Kumru [16] | 2021 | at 80%, 90%, and 110% of RMT of adductor pollicis brevis | 90 mA (80% of the motor threshold) | ||
Sasaki [27] | 2021 | Minimum to induce paresthesia | 28 mA | ||
Inanici [26] | 2021 | To best facilitate each activity | 120 mA | ||
Motor threshold | Freyvert [8] | 2018 | To maximize voluntary hand contraction | 100 mA | |
Gad [12] | 2018 | To maximize grip strength | 250 mA | ||
Milosevic [18] | 2018 | To evoke responses on ascending portion of recruitment curve of all muscles tested | 90 mA | ||
Benavides [7] | 2020 | To evoke motor output in biceps brachii | 90 mA | ||
Murray [25] | 2017 | Below motor threshold to level that induced bilateral muscle contraction | 68 mA | ||
Supramotor threshold | Wu [15] | 2020 | 80–200% of resting motor Threshold | 102 mA (up to 200% of the motor threshold) | |
Kumru [16] | 2021 | At 80%, 90%, and 110% of RMT of adductor pollicis brevis | 90 mA (110% of the motor threshold) | ||
Non-specific | Parhizi [21] | 2021 | At tolerance capacity | 70 mA | |
Inanici [9] | 2018 | Unspecified | 120 mA | ||
de Freitas [28] | 2021 | Cathode experiment: 10–100 mA or at pain threshold; anode experiment: to best produce post-activation depression. | 100 mA | ||
Lower Limb | Submotor threshold | Hofstoetter [10] | 2013 | To produce paresthesia below motor threshold | 18 V |
Hofstoetter [31] | 2014 | To produce paresthesia below motor threshold | 22 V | ||
Bedi [32] | 2015 | To induce sensory sensation | Unspecified | ||
Sayenko [34] | 2015 | 10–50% of maximal response amplitude in the LE musculature | 100 mA | ||
Bedi [38] | 2016 | To induce sensory sensation | Unspecified | ||
McHugh [39] | 2020 | Maximum tolerable amplitude or submotor threshold | 80 mA | ||
Hofstoetter [42] | 2015 | Subthreshold | 27 V | ||
Shapkova [14] | 2020 | In 1 Hz and 3Hz group, 1.3–1.4 × motor threshold. In 67 Hz group, below motor threshold. | Unspecified | ||
Samejima [43] | 2022 | Below motor threshold | 75 mA | ||
Motor threshold | Gorodnicheva [29] | 2012 | To evoke steplike movements | 100 mA | |
Krenn [30] | 2013 | At tolerance capacity (max 125 mA) | 125 mA | ||
Gerasimenko [35] | 2015 | Based on sensations felt by the subject and the motor output generated | 180 mA | ||
Gerasimenko [37] | 2015 | To induce stepping-like movements | 180 mA | ||
Minassian [13] | 2016 | Lower-limb PRM reflex threshold | 170 mA | ||
Gerasimenko [41] | 2018 | To generate involuntary rhythmic stepping-like movements without causing discomfort | 150 mA | ||
Sayenko [19] | 2019 | To maximally facilitate standing | 150 mA | ||
Manson [40] | 2020 | Maximum tolerable amplitude | Unspecified | ||
Al’joboori [17] | 2020 | At tolerance capacity or to produce paresthesia, whichever lower | 110 mA | ||
Sutor [33] | 2022 | At the lowest amplitude that produced lower-extremity EMG output | Unspecified | ||
Bye [44] | 2022 | 100% of amplitude to cause PRM reflex | Unspecified | ||
Supramotor threshold | Shapkova [14] | 2020 | In 1 Hz and 3Hz group, 1.3–1.4 × motor threshold. In 67 Hz group, below motor threshold. | Unspecified | |
Unspecified | Sayenko [36] | 2015 | At tolerance capacity (max 100 mA) | 100 mA | |
Gad [11] | 2017 | To best facilitate locomotor activity | 200 mA |
Extremity | Carrier Frequency | First Author | Year | Carrier Frequency (kHz) | Stimulation Frequency (Hz) |
---|---|---|---|---|---|
Upper-Extremity Studies | Carrier frequency | Inanici [9] | 2018 | 10 | 30 |
Gad [12] | 2018 | 10 | 30 | ||
Benavides [7] | 2020 | Either 5 or 0 | 30 | ||
Inanici [26] | 2021 | 10 | 30 | ||
Kumru [16] | 2021 | 10 | 30 | ||
Parhizi [21] | 2021 | 10 | 30 | ||
Sasaki [27] | 2021 | 10 | 30 | ||
no carrier frequency | Murray [25] | 2017 | N/A | 0.2 | |
Freyvert [8] | 2018 | N/A | 30 | ||
Milosevic [18] | 2019 | N/A | Single pulse | ||
Wu [15] | 2020 | N/A | 0.2 | ||
de Freitas [28] | 2021 | N/A | Two 2 ms pulses separated by 50 ms | ||
Lower-Extremity Studies | Carrier frequency | Gorodnicheva [29] | 2012 | 10 | 1, 5, 10, 20, 30, 40 |
Gerasimenko [35] | 2015 | 10 | 5 | ||
Bedi [32] | 2015 | 2.5 | 20 | ||
Gerasimenko [37] | 2015 | 10 | 30 Hz at T11, 5 Hz at coccyx | ||
Bedi [38] | 2016 | 2.5 | 30, 50, 70, 90 | ||
Gerasimenko [41] | 2018 | 5 | 30 at T11–T12, 0.3 at L1 | ||
Sayenko [19] | 2019 | 10 | 5, 15, 25, 30 | ||
Manson [40] | 2020 | 5 | Single pulse 0.2 Hz, continuous 30 Hz | ||
Bye [44] | 2022 | 10 | 20 Hz | ||
Samejima [43] | 2022 | 10 | 30 Hz | ||
no carrier frequency | Krenn [30] | 2013 | N/A | Unspecified | |
Hofstoetter [10] | 2013 | N/A | 30 | ||
Hofstoetter [31] | 2014 | N/A | 50 | ||
Sayenko [34] | 2015 | N/A | 30 | ||
Sayenko [36] | 2015 | N/A | Unspecified | ||
Minassian [13] | 2016 | N/A | 30 | ||
Gad [11] | 2017 | N/A | T11: 30 Hz; coccyx segment: 5 Hz | ||
Shapkova [14] | 2020 | N/A | 1, 3, 67 | ||
McHugh [39] | 2020 | N/A | 50 | ||
Al’joboori [17] | 2020 | N/A | 30 | ||
Sutor [33] | 2022 | N/A | 30 | ||
Hofstoetter [42] | 2015 | N/A | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.U.; Sneed, D.; Sutor, T.W.; Hoenig, H.; Gorgey, A.S. Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review. J. Clin. Med. 2023, 12, 854. https://doi.org/10.3390/jcm12030854
Rehman MU, Sneed D, Sutor TW, Hoenig H, Gorgey AS. Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review. Journal of Clinical Medicine. 2023; 12(3):854. https://doi.org/10.3390/jcm12030854
Chicago/Turabian StyleRehman, Muhammad Uzair, Dustin Sneed, Tommy W. Sutor, Helen Hoenig, and Ashraf S. Gorgey. 2023. "Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review" Journal of Clinical Medicine 12, no. 3: 854. https://doi.org/10.3390/jcm12030854
APA StyleRehman, M. U., Sneed, D., Sutor, T. W., Hoenig, H., & Gorgey, A. S. (2023). Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review. Journal of Clinical Medicine, 12(3), 854. https://doi.org/10.3390/jcm12030854