Risk Factors for Recurrent Hip Fractures Following Surgical Treatment of Primary Osteoporotic Hip Fractures in Chinese Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Enrollment and Eligibility Criteria
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Incidence and Risk Factors for Recurrent Hip Fractures Following Surgical Treatment of Primary Osteoporotic Hip Fractures
3.2. ROC Curve Analysis for Recurrent Hip Fractures
3.3. Comparison of Medical Costs and Outcomes for Patients with and Without Recurrent Hip Fractures
3.4. Risk Factors for Mortality in Older Patients Following Primary Osteoporotic Hip Fracture Surgery
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BMI | body mass index |
| ASA | American society of anesthesiologists |
| COPD | chronic obstructive pulmonary disease |
| PD | Parkinson’s disease |
| BMD | bone mineral density |
| OP | osteoporosis |
| eGFR | estimated glomerular filtration rate |
| Hb | hemoglobin |
| DXA | dual-energy X-ray absorptiometry |
| ROC | receiver operating characteristic curve |
| AUC | area under the ROC curve |
| IQR | interquartile range |
| SD | standard deviation |
| OR | odd ratio |
| HR | hazard ratio |
References
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef]
- Demontiero, O.; Vidal, C.; Duque, G. Aging and bone loss: New insights for the clinician. Ther. Adv. Musculoskelet. Dis. 2012, 4, 61–76. [Google Scholar] [CrossRef]
- Bhandari, M.; Swiontkowski, M. Management of Acute Hip Fracture. N. Engl. J. Med. 2017, 377, 2053–2062. [Google Scholar] [CrossRef]
- Wang, L.; Yu, W.; Yin, X.; Cui, L.; Tang, S.; Jiang, N.; Cui, L.; Zhao, N.; Lin, Q.; Chen, L.; et al. Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study. JAMA Netw. Open 2021, 4, e2121106. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.F.; Scheibye-Knudsen, M.; Jahn, H.J.; Li, J.; Ling, L.; Guo, H.; Zhu, X.; Preedy, V.; Lu, H.; Bohr, V.A.; et al. A research agenda for aging in China in the 21st century. Ageing Res. Rev. 2015, 24, 197–205. [Google Scholar] [CrossRef]
- Si, L.; Winzenberg, T.M.; Jiang, Q.; Chen, M.; Palmer, A.J. Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporos. Int. 2015, 26, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, L.; Pan, L.; Zeng, Y.; Fu, Q.; Liu, Y.; Peng, Y.; Wang, Y.; You, L. Risk factors of primary and recurrent fractures in postmenopausal osteoporotic Chinese patients: A retrospective analysis study. BMC Women’s Health 2022, 22, 465. [Google Scholar] [CrossRef] [PubMed]
- McDonough, C.M.; Harris-Hayes, M.; Kristensen, M.T.; Overgaard, J.A.; Herring, T.B.; Kenny, A.M.; Mangione, K.K. Physical Therapy Management of Older Adults with Hip Fracture. J. Orthop. Sports Phys. Ther. 2021, 51, cpg1–cpg81. [Google Scholar] [CrossRef]
- Wang, O.; Hu, Y.; Gong, S.; Xue, Q.; Deng, Z.; Wang, L.; Liu, H.; Tang, H.; Guo, X.; Chen, J.; et al. A survey of outcomes and management of patients post fragility fractures in China. Osteoporos. Int. 2015, 26, 2631–2640. [Google Scholar] [CrossRef]
- Odén, A.; McCloskey, E.V.; Kanis, J.A.; Harvey, N.C.; Johansson, H. Burden of high fracture probability worldwide: Secular increases 2010–2040. Osteoporos. Int. 2015, 26, 2243–2248. [Google Scholar] [CrossRef]
- Kanis, J.A.; Oden, A.; Johnell, O.; Johansson, H.; De Laet, C.; Brown, J.; Burckhardt, P.; Cooper, C.; Christiansen, C.; Cummings, S.; et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos. Int. 2007, 18, 1033–1046. [Google Scholar] [CrossRef]
- Hollevoet, N.; Verdonk, R.; Kaufman, J.M.; Goemaere, S. Osteoporotic fracture treatment. Acta Orthop. Belg. 2011, 77, 441–447. [Google Scholar]
- Saito, T.; Sterbenz, J.M.; Malay, S.; Zhong, L.; MacEachern, M.P.; Chung, K.C. Effectiveness of anti-osteoporotic drugs to prevent secondary fragility fractures: Systematic review and meta-analysis. Osteoporos. Int. 2017, 28, 3289–3300. [Google Scholar] [CrossRef]
- Bauer, D.C. Osteoporosis Treatment After Hip Fracture: Bad News and Getting Worse. JAMA Netw. Open 2018, 1, e180844. [Google Scholar] [CrossRef]
- Ganhão, S.; Guerra, M.G.; Lucas, R.; Terroso, G.; Aguiar, F.; Costa, L.; Vaz, C. Predictors of Mortality and Refracture in Patients Older Than 65 Years with a Proximal Femur Fracture. J. Clin. Rheumatol. 2022, 28, e49–e55. [Google Scholar] [CrossRef]
- Sriruanthong, K.; Philawuth, N.; Saloa, S.; Daraphongsataporn, N.; Sucharitpongpan, W. Risk factors of refracture after a fragility fracture in elderly. Arch. Osteoporos. 2022, 17, 98. [Google Scholar] [CrossRef] [PubMed]
- Boonen, S.; Adachi, J.D.; Man, Z.; Cummings, S.R.; Lippuner, K.; Törring, O.; Gallagher, J.C.; Farrerons, J.; Wang, A.; Franchimont, N.; et al. Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J. Clin. Endocrinol. Metab. 2011, 96, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Chen, P.M.; Lin, C.Y.; Chen, R.F.; Lee, P.Y. Beneficial effects of bipolar hemiarthroplasty replacement and fosamax in the retrospective cohort study of refracture and mortality of hip fractured patients. Pak. J. Pharm. Sci. 2016, 29, 1071–1075. [Google Scholar]
- Tai, T.-W.; Tsai, Y.-L.; Shih, C.-A.; Li, C.-C.; Chang, Y.-F.; Huang, C.-F.; Cheng, T.-T.; Hwang, J.-S.; Lu, T.-H.; Wu, C.-H. Refracture risk and all-cause mortality after vertebral fragility fractures: Anti-osteoporotic medications matter. J. Formos. Med. Assoc. 2023, 122, S65–S73. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Zhang, Y.; Niu, J.; Song, D.; Huang, Z.; Li, Z.; Liu, T.; Meng, B.; Shi, Q.; Zhu, X.; et al. A Real-world Study of Denosumab for Reducing Refracture Risk after Percutaneous Vertebral Augmentation. Orthop. Surg. 2024, 16, 1849–1860. [Google Scholar] [CrossRef]
- Huang, C.F.; Lin, S.M.; Hsu, J.C.; Kosik, R.O.; Chan, W.P. Antiresorptive injections in older adult patients with prior osteoporotic fractures: A real-world observational study. Arch. Osteoporos. 2025, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Odén, A.; McCloskey, E.V.; Johansson, H.; Wahl, D.A.; Cooper, C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos. Int. 2012, 23, 2239–2256. [Google Scholar] [CrossRef]
- van der Steen, J.T.; Lennaerts, H.; Hommel, D.; Augustijn, B.; Groot, M.; Hasselaar, J.; Bloem, B.R.; Koopmans, R.T.C.M. Dementia and Parkinson’s Disease: Similar and Divergent Challenges in Providing Palliative Care. Front. Neurol. 2019, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W.; Hosmer, T.; Le Cessie, S.; Lemeshow, S. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 1997, 16, 965–980. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. The TRIPOD Group. Circulation 2015, 131, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Deal, C. Osteoporosis in elderly: Prevention and treatment. Clin. Geriatr. Med. 2002, 18, 529–555. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Q.; Xu, Y.; Ren, C.; Sun, L.; Dong, W.; Li, M.; Xue, H.; Li, Z.; Zhang, K.; et al. Predictors of long-term mortality after intertrochanteric fractures surgery: A 3-year retrospective study. BMC Musculoskelet. Disord. 2022, 23, 472. [Google Scholar] [CrossRef]
- Hu, F.; Jiang, C.; Shen, J.; Tang, P.; Wang, Y. Preoperative predictors for mortality following hip fracture surgery: A systematic review and meta-analysis. Injury 2012, 43, 676–685. [Google Scholar] [CrossRef]
- Wong, R.M.Y.; Ho, W.T.; Wai, L.S.; Li, W.; Chau, W.W.; Chow, K.-H.S.; Cheung, W.-H. Fragility fractures and imminent fracture risk in Hong Kong: One of the cities with longest life expectancies. Arch. Osteoporos. 2019, 14, 104. [Google Scholar] [CrossRef]
- Montoya-García, M.-J.; Giner, M.; Marcos, R.; García-Romero, D.; Olmo-Montes, F.-J.; Miranda, M.J.; Hernández-Cruz, B.; Colmenero, M.-A.; Vázquez-Gámez, M.A. Fragility Fractures and Imminent Fracture Risk in the Spanish Population: A Retrospective Observational Cohort Study. J. Clin. Med. 2021, 10, 1082. [Google Scholar] [CrossRef]
- Banefelt, J.; Åkesson, K.; Spångéus, A.; Ljunggren, O.; Karlsson, L.; Ström, O.; Ortsäter, G.; Libanati, C.; Toth, E. Risk of imminent fracture following a previous fracture in a Swedish database study. Osteoporos. Int. 2019, 30, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Boissonneault, A.R.; Schwartz, A.M.; Staley, C.A.; Schenker, M.L. Frailty and Malnutrition Are Associated with Inpatient Postoperative Complications and Mortality in Hip Fracture Patients. J. Orthop. Trauma 2019, 33, 143–148. [Google Scholar] [CrossRef]
- Cui, Z.; Feng, H.; Meng, X.; Zhuang, S.; Liu, Z.; Ye, K.; Sun, C.; Xing, Y.; Zhou, F.; Tian, Y. Age-specific 1-year mortality rates after hip fracture based on the populations in mainland China between the years 2000 and 2018: A systematic analysis. Arch. Osteoporos. 2019, 14, 55. [Google Scholar] [CrossRef]
- Inoue, D.; Watanabe, R.; Okazaki, R. COPD and osteoporosis: Links, risks, and treatment challenges. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 637–648. [Google Scholar] [CrossRef]
- Schnell, A.D.; Curtis, J.R.; Saag, K.G. Importance of Recent Fracture as Predictor of Imminent Fracture Risk. Curr. Osteoporos. Rep. 2018, 16, 738–745. [Google Scholar] [CrossRef]
- Bohlken, J.; Jacob, L.; Schaum, P.; Rapp, M.A.; Kostev, K. Hip fracture risk in patients with dementia in German primary care practices. Dementia 2017, 16, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, A.; Khalili, M.; Sedighi, B.; Iranpour, S.; Haghdoost, A.A. Parkinson’s disease and risk of hip fracture: Systematic review and meta-analysis. Acta Neurol. Belg. 2018, 118, 201–210. [Google Scholar] [CrossRef]
- Johansson, H.; Siggeirsdóttir, K.; Harvey, N.C.; Odén, A.; Gudnason, V.; McCloskey, E.; Sigurdsson, G.; Kanis, J.A. Imminent risk of fracture after fracture. Osteoporos. Int. 2017, 28, 775–780. [Google Scholar] [CrossRef]
- McClung, M.R.; Boonen, S.; Törring, O.; Roux, C.; Rizzoli, R.; Bone, H.G.; Benhamou, C.-L.; Lems, W.F.; Minisola, S.; Halse, J.; et al. Effect of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J. Bone Miner. Res. 2012, 27, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Sköld, C.; Kultima, K.; Freyhult, E.; Larsson, A.; Gordh, T.; Hailer, N.P.; Mallmin, H. Effects of denosumab treatment on the expression of receptor activator of nuclear kappa-B ligand (RANKL) and TNF-receptor TNFRSF9 after total hip arthroplasty-results from a randomized placebo-controlled clinical trial. Osteoporos. Int. 2022, 33, 1–8. [Google Scholar] [CrossRef]



| Total (n = 376) | Non-Recurrent Hip Fracture Group (n = 299) | Recurrent Hip Fracture Group (n = 77) | p Value | |
|---|---|---|---|---|
| Gender, n (%) | 0.247 | |||
| female | 289 (76.9) | 226 (75.6) | 63 (81.8) | |
| male | 87 (23.1) | 73 (24.4) | 14 (18.2) | |
| Age, n (%) | 0.002 | |||
| 65–84 years | 242 (64.4) | 204 (68.2) | 38 (49.4) | |
| ≥85 years | 134 (35.6) | 95 (31.8) | 39 (50.6) | |
| BMI (kg·m−2), n (%) | 0.474 | |||
| <19 | 64 (17.0) | 53 (17.7) | 11 (14.3) | |
| ≥19 | 312 (83.0) | 246 (82.3) | 66 (85.7) | |
| ASA, n (%) | 0.098 | |||
| 1 | 112 (29.8) | 85 (28.4) | 27 (35.1) | |
| 2 | 240 (63.8) | 198 (66.2) | 42 (54.5) | |
| 3 | 24 (6.4) | 16 (5.4) | 8 (10.4) | |
| Site of primary hip fracture, n (%) | 0.110 | |||
| Left | 185 (49.2) | 155 (51.8) | 30 (39.0) | |
| Right | 191 (50.8) | 144 (48.2) | 47 (61.0) | |
| Surgical types of primary hip fracture, n (%) | 0.969 | |||
| Internal fixation | 157 (41.8) | 125 (41.8) | 32 (41.6) | |
| Hip arthroplasty | 219 (58.2) | 174 (58.2) | 45 (58.4) | |
| Types of primary hip fracture, n (%) | 0.774 | |||
| Femoral neck fracture | 259 (68.9) | 207 (69.2) | 52 (67.5) | |
| intertrochanteric fracture | 117 (31.1) | 92 (30.8) | 25 (32.5) | |
| Anesthesia, n (%) | 0.324 | |||
| General anesthesia | 73 (19.4) | 55 (18.4) | 59 (76.6) | |
| Spinal anesthesia | 303 (80.6) | 244 (81.6) | 18 (23.4) | |
| Smoke, n (%) | 37 (9.8) | 29 (9.7) | 8 (10.4) | 0.682 |
| Alcohol, n (%) | 57 (15.2) | 37 (12.4) | 20 (26.0) | 0.015 |
| Blood transfusion | 81 (21.5) | 62 (20.7) | 19 (24.7) | 0.453 |
| Concomitant underlying diseases | ||||
| Hypertension, n (%) | 163 (43.3) | 132 (44.1) | 31 (40.3) | 0.539 |
| Diabetes, n (%) | 71 (18.9) | 62 (20.7) | 9 (11.7) | 0.070 |
| Heart attack, n (%) | 64 (17.0) | 14 (18.2) | 50 (16.7) | 0.761 |
| Stroke, n (%) | 35 (9.3) | 30 (10.0) | 5 (6.5) | 0.340 |
| Heart failure, n (%) | 7 (1.9) | 4 (1.3) | 3 (3.9) | 0.139 |
| COPD, n (%) | 48 (12.8) | 28 (9.4) | 20 (26.0) | <0.001 |
| Anxiety/Depression, n (%) | 5 (1.3) | 4 (1.3) | 1 (1.3) | 0.979 |
| Dementia, n (%) | 17 (4.5) | 9 (3.0) | 8 (10.4) | 0.005 |
| PD, n (%) | 45 (12.0) | 26 (8.7) | 19 (24.7) | <0.001 |
| Deep vein thrombosis, n (%) | 11 (2.9) | 9 (3.0) | 2 (2.6) | 0.848 |
| Sleep disturbance, n (%) | 8 (2.1) | 6 (2.0) | 2 (2.6) | 0.749 |
| Antiosteoporosis drugs, n (%) | 149 (39.6) | 134 (44.8) | 15 (19.5) | <0.001 |
| Duration of antiosteoporosis drug therapy (month) Median (IQR) | 34.5 (9.4) | 36.0 (3.1) | 33.9 (10.1) | <0.001 |
| Laboratory variables | ||||
| Hb level at admission (g·L−1) Mean ± SD | 105.7 ± 17.5 | 106.0 ± 17.3 | 104.4 ± 18.4 | 0.490 |
| Albumin (g·L−1), n (%) | 0.010 | |||
| ≥35 | 108 (29.3) | 95 (32.4) | 13 (17.3) | |
| <35 | 260 (70.7) | 198 (67.6) | 62 (82.7) | |
| eGFR(mL·min−1·1.73−2) Median (IQR) | 76.0 (25.8) | 75.5 (27) | 83.0 (22.0) | 0.486 |
| Serum calcium (mmol·L−1) Mean ± SD | 2.17 ± 0.14 | 2.17 ± 0.13 | 2.11 ± 0.16 | 0.057 |
| 25-hydroxyvitamin D (nmol·L−1) Median (IQR) | 32.1 (22.1) | 33.1 (22.7) | 26.0 (23.3) | 0.173 |
| B | OR | 95%CI | p Value | ||
|---|---|---|---|---|---|
| Lower | Upper | ||||
| ≥85 years | 1.140 | 3.127 | 1.672 | 5.849 | <0.001 |
| COPD | 1.333 | 3.794 | 1.747 | 8.236 | <0.001 |
| PD | 1.010 | 2.744 | 1.249 | 6.028 | 0.012 |
| Antiosteoporosis drugs | −1.414 | 0.243 | 0.131 | 0.451 | <0.001 |
| Duration of antiosteoporosis drugs therapy | −0.682 | 0.564 | 0.283 | 0.830 | 0.003 |
| Albumin ≥ 35 g·L−1 | −0.884 | 0.413 | 0.194 | 0.881 | 0.022 |
| Constant | −3.682 | 0.025 | <0.001 | ||
| Total (n = 376) | Non-Recurrent Hip Fracture Group (n = 299) | Recurrent Hip Fracture Group (n = 77) | p Value | |
|---|---|---|---|---|
| Total costs (US $) Median (IQR) | 7085.6 (3590.6) | 7149.4 (3383.6) | 6780.2 (2876.1) | 0.782 |
| Length of hospital stay(day) Median (IQR) | 6.0 (5.0) | 6.0 (5.0) | 6.0 (6.0) | 0.661 |
| Cumulative 1-year mortality, n (%) | 22 (5.9) | 14 (4.7) | 8 (10.4) | 0.057 |
| Cumulative 2-year mortality, n (%) | 32 (8.5) | 21 (7.0) | 11 (14.3) | 0.042 |
| Cumulative 3-year mortality, n (%) | 66 (17.6) | 46 (15.4) | 20 (26.0) | 0.029 |
| B | OR | 95%CI | p Value | ||
|---|---|---|---|---|---|
| Lower | Upper | ||||
| ≥85 years | 0.938 | 2.555 | 1.473 | 4.433 | <0.001 |
| Antiosteoporosis drugs | −1.036 | 0.369 | 0.176 | 0.773 | 0.008 |
| Duration of antiosteoporosis drug therapy | −0.150 | 0.561 | 0.328 | 0.895 | <0.001 |
| Constant | 2.003 | 7.414 | <0.001 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shen, W.; Jiang, J.; Wang, L.; Xia, Q.; Shao, Y.; Cao, L. Risk Factors for Recurrent Hip Fractures Following Surgical Treatment of Primary Osteoporotic Hip Fractures in Chinese Older Adults. Diseases 2025, 13, 351. https://doi.org/10.3390/diseases13110351
Wang Y, Shen W, Jiang J, Wang L, Xia Q, Shao Y, Cao L. Risk Factors for Recurrent Hip Fractures Following Surgical Treatment of Primary Osteoporotic Hip Fractures in Chinese Older Adults. Diseases. 2025; 13(11):351. https://doi.org/10.3390/diseases13110351
Chicago/Turabian StyleWang, Yuzhu, Wenhui Shen, Jiayi Jiang, Lin Wang, Qing Xia, Yunchao Shao, and Lu Cao. 2025. "Risk Factors for Recurrent Hip Fractures Following Surgical Treatment of Primary Osteoporotic Hip Fractures in Chinese Older Adults" Diseases 13, no. 11: 351. https://doi.org/10.3390/diseases13110351
APA StyleWang, Y., Shen, W., Jiang, J., Wang, L., Xia, Q., Shao, Y., & Cao, L. (2025). Risk Factors for Recurrent Hip Fractures Following Surgical Treatment of Primary Osteoporotic Hip Fractures in Chinese Older Adults. Diseases, 13(11), 351. https://doi.org/10.3390/diseases13110351
