The Effectiveness and Safety of Long-Term Macrolide Therapy for COPD in Stable Status: A Systematic Review and Meta-Analysis
Abstract
:1. Background
2. Methods
2.1. Database Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Definitions
2.4. Outcomes
2.5. Statistics
3. Results
3.1. Study Searching
3.2. Preventing Exacerbations in COPD
3.3. Optimal Prescription Duration
3.4. SGRQ
3.5. Hospitalization Prevention
3.6. Adverse Events
4. Discussion
Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Celli, B.R.; Criner, G.J.; Frith, P.; López Varela, M.V.; Salvi, S.; Vogelmeier, C.F.; Chen, R.; Mortimer, K.; Montes de Oca, M.; et al. The GOLD Summit on chronic obstructive pulmonary disease in low- and middle-income countries. Int. J. Tuberc. Lung Dis. 2019, 23, 1131–1141. [Google Scholar] [CrossRef]
- Iheanacho, I.; Zhang, S.; King, D.; Rizzo, M.; Ismaila, A.S. Economic Burden of Chronic Obstructive Pulmonary Disease (COPD): A Systematic Literature Review. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 439–460. [Google Scholar] [CrossRef]
- Wilson, R.; Anzueto, A.; Miravitlles, M.; Arvis, P.; Haverstock, D.; Trajanovic, M.; Sethi, S. Prognostic factors for clinical failure of exacerbations in elderly outpatients with moderate-to-severe COPD. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Hartl, S.; Lopez-Campos, J.L.; Pozo-Rodriguez, F.; Castro-Acosta, A.; Studnicka, M.; Kaiser, B.; Roberts, C.M. Risk of death and readmission of hospital-admitted COPD exacerbations: European COPD Audit. Eur. Respir. J. 2016, 47, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Prevention, Diagnosis and Management of Copd: 2023 Report. Available online: https://goldcopd.org/2023-gold-report-2/ (accessed on 12 July 2023).
- Seemungal, T.A.; Wilkinson, T.M.; Hurst, J.R.; Perera, W.R.; Sapsford, R.J.; Wedzicha, J.A. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am. J. Respir. Crit. Care Med. 2008, 178, 1139–1147. [Google Scholar] [CrossRef]
- Albert, R.K.; Connett, J.; Bailey, W.C.; Casaburi, R.; Cooper, J.A., Jr.; Criner, G.J.; Curtis, J.L.; Dransfield, M.T.; Han, M.K.; Lazarus, S.C.; et al. Azithromycin for prevention of exacerbations of COPD. N. Engl. J. Med. 2011, 365, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Abia-Trujillo, D.; Johnson, M.M.; Patel, N.M.; Hazelett, B.; Edell, E.S.; Kern, R.M.; Midthun, D.; Reisenauer, J.; Nelson, D.; Mullon, J.J.; et al. Bronchoscopic Lung Volume Reduction: A New Hope for Patients With Severe Emphysema and Air Trapping. Mayo Clin. Proc. 2021, 96, 464–472. [Google Scholar] [CrossRef]
- Parnham, M.J.; Norris, V.; Kricker, J.A.; Gudjonsson, T.; Page, C.P. Prospects for macrolide therapy of asthma and COPD. Adv. Pharmacol. 2023, 98, 83–110. [Google Scholar] [CrossRef]
- Han, M.K.; Tayob, N.; Murray, S.; Dransfield, M.T.; Washko, G.; Scanlon, P.D.; Criner, G.J.; Casaburi, R.; Connett, J.; Lazarus, S.C.; et al. Predictors of chronic obstructive pulmonary disease exacerbation reduction in response to daily azithromycin therapy. Am. J. Respir. Crit. Care Med. 2014, 189, 1503–1508. [Google Scholar] [CrossRef]
- Cao, Y.; Xuan, S.; Wu, Y.; Yao, X. Effects of long-term macrolide therapy at low doses in stable COPD. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1289–1298. [Google Scholar] [CrossRef]
- Herath, S.C.; Normansell, R.; Maisey, S.; Poole, P. Prophylactic antibiotic therapy for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev. 2018, 10, Cd009764. [Google Scholar] [CrossRef]
- Ritchie, A.I.; Wedzicha, J.A. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin. Chest Med. 2020, 41, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj 2021, 372, n71. [Google Scholar] [CrossRef]
- University Hospital Medical Information (UMIN). Available online: https://rctportal.niph.go.jp/s/detail/um?trial_id=UMIN000050691 (accessed on 23 June 2023).
- Janjua, S.; Mathioudakis, A.G.; Fortescue, R.; Walker, R.A.; Sharif, S.; Threapleton, C.J.; Dias, S. Prophylactic antibiotics for adults with chronic obstructive pulmonary disease: A network meta-analysis. Cochrane Database Syst. Rev. 2021, 1, Cd013198. [Google Scholar] [CrossRef]
- Adams, S.G.; Peters, J.I. In COPD, prophylactic macrolides, but not tetracyclines or quinolones, reduce exacerbations, with fewer serious adverse events. Ann. Intern. Med. 2021, 174, Jc66. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease Report: 2022 Report. Available online: https://goldcopd.org/2022-gold-reports/ (accessed on 12 June 2023).
- Jones, P.W.; Quirk, F.H.; Baveystock, C.M. The St George’s Respiratory Questionnaire. Respir. Med. 1991, 85 (Suppl. B), 25–31, discussion 33–27. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022); Cochrane Library: London, UK, 2022. [Google Scholar]
- Berkhof, F.F.; Doornewaard-ten Hertog, N.E.; Uil, S.M.; Kerstjens, H.A.; van den Berg, J.W. Azithromycin and cough-specific health status in patients with chronic obstructive pulmonary disease and chronic cough: A randomised controlled trial. Respir. Res. 2013, 14, 125. [Google Scholar] [CrossRef]
- Uzun, S.; Djamin, R.S.; Kluytmans, J.A.; Mulder, P.G.; van’t Veer, N.E.; Ermens, A.A.; Pelle, A.J.; Hoogsteden, H.C.; Aerts, J.G.; van der Eerden, M.M. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2014, 2, 361–368. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Y.; Ou, L.M.; Zhang, J.Q.; Bai, J.; Liu, G.N.; Li, M.H.; Deng, J.M.; MacNee, W.; Zhong, X.N. Effect of 6 months of erythromycin treatment on inflammatory cells in induced sputum and exacerbations in chronic obstructive pulmonary disease. Respiration 2010, 80, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.L.; Powell, H.; Baines, K.J.; Milne, D.; Coxson, H.O.; Hansbro, P.M.; Gibson, P.G. The effect of azithromycin in adults with stable neutrophilic COPD: A double blind randomised, placebo controlled trial. PLoS ONE 2014, 9, e105609. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Khair, O.A.; Honeybourne, D. The effect of oral clarithromycin on health status and sputum bacteriology in stable COPD. Respir. Med. 2005, 99, 208–215. [Google Scholar] [CrossRef]
- Suzuki, T.; Yanai, M.; Yamaya, M.; Satoh-Nakagawa, T.; Sekizawa, K.; Ishida, S.; Sasaki, H. Erythromycin and common cold in COPD. Chest 2001, 120, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Vermeersch, K.; Belmans, A.; Bogaerts, K.; Gyselinck, I.; Cardinaels, N.; Gabrovska, M.; Aumann, J.; Demedts, I.K.; Corhay, J.L.; Marchand, E.; et al. Treatment failure and hospital readmissions in severe COPD exacerbations treated with azithromycin versus placebo—A post-hoc analysis of the BACE randomized controlled trial. Respir. Res. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Jones, P.W. Quality of life, symptoms and pulmonary function in asthma: Long-term treatment with nedocromil sodium examined in a controlled multicentre trial. Nedocromil Sodium Quality of Life Study Group. Eur. Respir. J. 1994, 7, 55–62. [Google Scholar] [CrossRef]
- Cazzola, M.; Hanania, N.A.; Page, C.P.; Matera, M.G. Novel Anti-Inflammatory Approaches to COPD. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 1333–1352. [Google Scholar] [CrossRef]
- Cha, S.R.; Jang, J.; Park, S.M.; Ryu, S.M.; Cho, S.J.; Yang, S.R. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants 2023, 12, 1210. [Google Scholar] [CrossRef]
- Boue, S.; Fields, B.; Hoeng, J.; Park, J.; Peitsch, M.C.; Schlage, W.K.; Talikka, M.; Binenbaum, I.; Bondarenko, V.; Bulgakov, O.V.; et al. Enhancement of COPD biological networks using a web-based collaboration interface. F1000Research 2015, 4, 32. [Google Scholar] [CrossRef]
- Silverman, E.K. Genetics of COPD. Annu. Rev. Physiol. 2020, 82, 413–431. [Google Scholar] [CrossRef]
- Choi, J.; Shim, J.J.; Lee, M.G.; Rhee, C.K.; Joo, H.; Lee, J.H.; Park, H.Y.; Kim, W.J.; Um, S.J.; Kim, D.K.; et al. Association Between Air Pollution and Viral Infection in Severe Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J. Korean Med. Sci. 2023, 38, e68. [Google Scholar] [CrossRef]
- Yang, H.; Wen, X.; Wu, F.; Zheng, Y.; Dai, C.; Zhao, N.; Deng, Z.; Wang, Z.; Peng, J.; Xiao, S.; et al. Inter-relationships among neutrophilic inflammation, air trapping and future exacerbation in COPD: An analysis of ECOPD study. BMJ Open Respir. Res. 2023, 10, e001597. [Google Scholar] [CrossRef]
- Kricker, J.A.; Page, C.P.; Gardarsson, F.R.; Baldursson, O.; Gudjonsson, T.; Parnham, M.J. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol. Rev. 2021, 73, 233–262. [Google Scholar] [CrossRef]
- Oliver, M.E.; Hinks, T.S.C. Azithromycin in viral infections. Rev. Med. Virol. 2021, 31, e2163. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.D.; Watson, J.; Roberts, L.R.; Gill, S.K.; Groves, H.; Dhariwal, J.; Almond, M.H.; Wong, E.; Walton, R.P.; Jones, L.H.; et al. Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. J. Antimicrob. Chemother. 2016, 71, 2767–2781. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.; Gey, J.; Oezel, B.; Mackay, A.J.; Kumari, C.; Kaur, V.P.; Larkin, N.; Harte, J.; Vergara-Muro, S.; Gutzwiller, F.S. Impact of cough and mucus on COPD patients: Primary insights from an exploratory study with an Online Patient Community. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1365–1376. [Google Scholar] [CrossRef]
- Choate, R.; Pasquale, C.B.; Parada, N.A.; Prieto-Centurion, V.; Mularski, R.A.; Yawn, B.P. The Burden of Cough and Phlegm in People With COPD: A COPD Patient-Powered Research Network Study. Chronic Obstr. Pulm. Dis. 2020, 7, 49–59. [Google Scholar] [CrossRef]
- Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev. 2010, 23, 590–615. [Google Scholar] [CrossRef] [PubMed]
- Yang, J. Mechanism of azithromycin in airway diseases. J. Int. Med. Res. 2020, 48, 300060520932104. [Google Scholar] [CrossRef]
- Yamaya, M.; Kikuchi, A.; Sugawara, M.; Nishimura, H. Anti-inflammatory effects of medications used for viral infection-induced respiratory diseases. Respir. Investig. 2023, 61, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Heidary, M.; Samangani, A.E.; Kargari, A.; Nejad, A.K.; Yashmi, I.; Motahar, M.; Taki, E.; Khoshnood, S. Mechanism of action, resistance, synergism, and clinical implications of azithromycin. J. Clin. Lab. Anal. 2022, 36, e24427. [Google Scholar] [CrossRef]
- Celli, B.R.; Barnes, P.J. Exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J. 2007, 29, 1224–1238. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, T.D.Y.; Saris, A.; Schultz, M.J.; van der Poll, T. Immunomodulation by macrolides: Therapeutic potential for critical care. Lancet Respir. Med. 2020, 8, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Colombo, S.A.P.; Brown, S.L.; Hepworth, M.R.; Hankinson, J.; Granato, F.; Kitchen, S.J.; Hussell, T.; Simpson, A.; Cook, P.C.; MacDonald, A.S. Comparative phenotype of circulating versus tissue immune cells in human lung and blood compartments during health and disease. Discov. Immunol. 2023, 2, kyad009. [Google Scholar] [CrossRef] [PubMed]
- Talman, S.; Uzun, S.; Djannin, R.S.; Baart, S.J.; Grootenboers, M.; Aerts, J.; van der Eerden, M. Long-Term Azithromycin Maintenance Treatment in Patients with Frequent Exacerbations of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 495–498. [Google Scholar] [CrossRef]
- Pomares, X.; Montón, C.; Bullich, M.; Cuevas, O.; Oliva, J.C.; Gallego, M.; Monsó, E. Clinical and Safety Outcomes of Long-Term Azithromycin Therapy in Severe COPD Beyond the First Year of Treatment. Chest 2018, 153, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Quirk, F.H.; Baveystock, C.M.; Littlejohns, P. A self-complete measure of health status for chronic airflow limitation. The St. George’s Respiratory Questionnaire. Am. Rev. Respir. Dis. 1992, 145, 1321–1327. [Google Scholar] [CrossRef]
- Agusti, A.; Calverley, P.M.; Celli, B.; Coxson, H.O.; Edwards, L.D.; Lomas, D.A.; MacNee, W.; Miller, B.E.; Rennard, S.; Silverman, E.K.; et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir. Res. 2010, 11, 122. [Google Scholar] [CrossRef]
- Nishimura, K.; Mitsuma, S.; Kobayashi, A.; Yanagida, M.; Nakayasu, K.; Hasegawa, Y.; Jones, P.W. COPD and disease-specific health status in a working population. Respir. Res. 2013, 14, 61. [Google Scholar] [CrossRef]
- Martin, A.L.; Marvel, J.; Fahrbach, K.; Cadarette, S.M.; Wilcox, T.K.; Donohue, J.F. The association of lung function and St. George’s respiratory questionnaire with exacerbations in COPD: A systematic literature review and regression analysis. Respir. Res. 2016, 17, 40. [Google Scholar] [CrossRef]
- Camac, E.R.; Stumpf, N.A.; Voelker, H.K.; Criner, G.J. Short-Term Impact of the Frequency of COPD Exacerbations on Quality of Life. Chronic Obstr. Pulm. Dis. 2022, 9, 298–308. [Google Scholar] [CrossRef]
- Criner, G.J.; Connett, J.E.; Aaron, S.D.; Albert, R.K.; Bailey, W.C.; Casaburi, R.; Cooper, J.A., Jr.; Curtis, J.L.; Dransfield, M.T.; Han, M.K.; et al. Simvastatin for the prevention of exacerbations in moderate-to-severe COPD. N. Engl. J. Med. 2014, 370, 2201–2210. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Leong, L.E.X.; Mobegi, F.M.; Choo, J.M.; Wesselingh, S.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; et al. Long-Term Azithromycin Reduces Haemophilus influenzae and Increases Antibiotic Resistance in Severe Asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 309–317. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Country | Design | Medicine | Usage | Severity | Treatment | Control | Duration |
---|---|---|---|---|---|---|---|---|
Albert 2011 [8] | USA | RCT | Azithromycin | 250 mg once daily | ≥moderate | 570 | 572 | 12 months |
Banerjee 2005 [26] | UK | RCT | Clarithromycin | 500 mg once daily | ≥moderate | 31 | 36 | 3 months |
Berkhof 2013 [22] | Netherlands | RCT | Azithromycin | 250 mg once 3 days/week | ≥moderate | 42 | 42 | 3 months |
He 2010 [24] | China | RCT | Erythromycin | 125 mg 3 times daily | ≥moderate | 16 | 15 | 6 months |
Seemungal 2008 [7] | UK | RCT | Erythromycin | 250 mg twice daily | ≥moderate | 53 | 56 | 12 months |
Simpson 2014 [25] | Australia | RCT | Azithromycin | 250 mg once daily | ≥moderate | 15 | 15 | 3 months |
Suzuki 2001 [27] | Japan | RCT | Erythromycin | 200–400 mg once daily | ≥moderate | 55 | 54 | 12 months |
Uzun 2014 [23] † | Netherlands | RCT | Azithromycin | 500 mg once 3 days/week | ≥moderate | 47 | 45 | 12 months |
Vermeersch 2019 [28] | Belgium | RCT | Azithromycin | 250 mg every 2 days | ≥moderate | 147 | 154 | 3 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, K.; Fujita, Y.; Chen, H.; Somekawa, K.; Kashizaki, F.; Koizumi, H.; Takahashi, K.; Horita, N.; Hara, Y.; Muro, S.; et al. The Effectiveness and Safety of Long-Term Macrolide Therapy for COPD in Stable Status: A Systematic Review and Meta-Analysis. Diseases 2023, 11, 152. https://doi.org/10.3390/diseases11040152
Nakamura K, Fujita Y, Chen H, Somekawa K, Kashizaki F, Koizumi H, Takahashi K, Horita N, Hara Y, Muro S, et al. The Effectiveness and Safety of Long-Term Macrolide Therapy for COPD in Stable Status: A Systematic Review and Meta-Analysis. Diseases. 2023; 11(4):152. https://doi.org/10.3390/diseases11040152
Chicago/Turabian StyleNakamura, Kazunori, Yukio Fujita, Hao Chen, Kohei Somekawa, Fumihiro Kashizaki, Harumi Koizumi, Kenichi Takahashi, Nobuyuki Horita, Yu Hara, Shigeo Muro, and et al. 2023. "The Effectiveness and Safety of Long-Term Macrolide Therapy for COPD in Stable Status: A Systematic Review and Meta-Analysis" Diseases 11, no. 4: 152. https://doi.org/10.3390/diseases11040152
APA StyleNakamura, K., Fujita, Y., Chen, H., Somekawa, K., Kashizaki, F., Koizumi, H., Takahashi, K., Horita, N., Hara, Y., Muro, S., & Kaneko, T. (2023). The Effectiveness and Safety of Long-Term Macrolide Therapy for COPD in Stable Status: A Systematic Review and Meta-Analysis. Diseases, 11(4), 152. https://doi.org/10.3390/diseases11040152