The Association between Non-Invasive Ventilation and the Rate of Ventilator-Associated Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NIVO Type | |||||||
---|---|---|---|---|---|---|---|
None | CPAP | HFNC | BIPAP | Combo | Total | p-Value | |
(N = 285) | (N = 30) | (N = 17) | (N = 16) | (N = 96) | (N = 444) | ||
Staining result | |||||||
Gram-positive | 193 (67.7) | 21 (70.0) | 7 (41.2) | 13 (81.3) | 60 (62.5) | 294 (66.2) | 0.38 |
Gram-negative | 78 (27.4) | 7 (23.3) | 9 (52.9) | 2 (12.5) | 30 (31.3) | 126 (28.4) | |
Mixed | 14 (4.9) | 2 (6.7) | 1 (5.9) | 1 (6.3) | 6 (6.3) | 24 (5.4) | |
Bacteria type(s) | |||||||
Achromobacter | 11 (3.9) | 1 (3.3) | 1 (5.9) | 0 | 3 (0.3) | 16 (3.6) | |
Acinetobacter | 2 (0.7) | 0 | 0 | 2 (12.5) | 0 | 4 (0.9) | |
Burkholderia | 4 (1.4) | 0 | 1 (5.9) | 1 (6.3) | 1 (0.1) | 7 (1.6) | |
Citrobacter | 15 (5.3) | 3 (10) | 0 | 1 (6.3) | 4 (0.4) | 23 (5.2) | |
Corynebacterium | 1 (0.4) | 0 | 0 | 0 | 0 | 1 (0.2) | |
Escherichia coli | 28 (9.8) | 4 (13.3) | 0 | 1 (6.3) | 11 (1.1) | 44 (9.9) | |
Elizabethkingia | 0 | 0 | 1 (5.9) | 0 | 0 | 1 (0.2) | |
Enterobacter | 12 (4.2) | 3 (10) | 0 | 0 | 5 (0.5) | 20 (4.5) | |
Haemophilus | 5 (1.8) | 1 (3.3) | 0 | 1 (6.3) | 1 (0.1) | 8 (1.8) | |
Klebsiella | 54 (18.9) | 5 (16.7) | 2 (11.8) | 3 (18.8) | 20 (2.1) | 84 (18.9) | |
Moraxella | 9 (3.2) | 1 (3.3) | 0 | 0 | 1 (0.1) | 11 (2.5) | |
Morganella | 2 (0.7) | 0 | 1 (5.9) | 0 | 1 (0.1) | 4 (0.9) | |
MRSA | 3 (1.1) | 0 | 0 | 0 | 3 (0.3) | 6 (1.4) | |
MSSA | 87 (30.5) | 9 (30) | 10 (58.8) | 2 (12.5) | 33 (3.4) | 141 (31.8) | |
Proteus | 0 | 1 (3.3) | 0 | 0 | 0 | 1 (0.2) | |
Pseudomonas | 56 (19.6) | 5 (16.7) | 3 (17.6) | 5 (31.3) | 14 (1.4) | 83 (18.7) | |
Serratia | 32 (11.2) | 2 (6.7) | 2 (11.8) | 1 (6.3) | 9 (0.9) | 46 (10.4) | |
Stenotrophomonas | 10 (3.5) | 1 (3.3) | 0 | 2 (12.5) | 9 (0.9) | 22 (5) | |
Streptococcus pneumoniae | 2 (0.7) | 0 | 0 | 0 | 2 (0.2) | 4 (0.9) | |
Streptococcus agalactiae | 3 (1.1) | 1 (3.3) | 0 | 0 | 3 (0.3) | 7 (1.6) |
References
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Modi, A.R.; Kovacs, C.S. Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention. Clevel. Clin. J. Med. 2020, 87, 633–639. [Google Scholar] [CrossRef]
- Papazian, L.; Klompas, M.; Luyt, C.-E. Ventilator-associated pneumonia in adults: A narrative review. Intensiv. Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef]
- Kallet, R.H. Ventilator Bundles in Transition: From Prevention of Ventilator-Associated Pneumonia to Prevention of Ventilator-Associated Events. Respir. Care 2019, 64, 994–1006. [Google Scholar] [CrossRef]
- Metersky, M.L.; Wang, Y.; Klompas, M.; Eckenrode, S.; Bakullari, A.; Eldridge, N. Trend in Ventilator-Associated Pneumonia Rates Between 2005 and 2013. JAMA 2016, 316, 2427–2429. [Google Scholar] [CrossRef]
- Masip, J.; Peacock, W.F.; Price, S.; Cullen, L.; Martin-Sanchez, F.J.; Seferovic, P.; Maisel, A.S.; Miro, O.; Filippatos, G.; Vrints, C.; et al. Indications and practical approach to non-invasive ventilation in acute heart failure. Eur. Heart J. 2018, 39, 17–25. [Google Scholar] [CrossRef]
- Osadnik, C.R.; Tee, V.S.; Carson-Chahhoud, K.V.; Picot, J.; Wedzicha, J.A.; Smith, B.J. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2017, 7, CD004104. [Google Scholar] [CrossRef]
- Demoule, A.; oVNI Study Group; Chevret, S.; Carlucci, A.; Kouatchet, A.; Jaber, S.; Meziani, F.; Schmidt, M.; Schnell, D.; Clergue, C.; et al. Changing use of noninvasive ventilation in critically ill patients: Trends over 15 years in francophone countries. Intensiv. Care Med. 2016, 42, 82–92. [Google Scholar] [CrossRef]
- de Miguel-Diez, J.; Jiménez-García, R.; Hernández-Barrera, V.; Puente-Maestu, L.; Girón-Matute, W.I.; de Miguel-Yanes, J.M.; Méndez-Bailón, M.; Villanueva-Orbaiz, R.; Albaladejo-Vicente, R.; López-de-Andrés, A. Trends in the Use and Outcomes of Mechanical Ventilation among Patients Hospitalized with Acute Exacerbations of COPD in Spain, 2001 to 2015. J. Clin. Med. 2019, 8, 1621. [Google Scholar] [CrossRef]
- Smith, A.; França, U.L.; McManus, M.L. Trends in the Use of Noninvasive and Invasive Ventilation for Severe Asthma. Pediatrics 2020, 146, e20200534. [Google Scholar] [CrossRef]
- Sullivan, D.R.; Kim, H.; Gozalo, P.L.; Bunker, J.; Teno, J.M. Trends in Noninvasive and Invasive Mechanical Ventilation Among Medicare Beneficiaries at the End of Life. JAMA Intern. Med. 2021, 181, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Klompas, M.; Branson, R.; Cawcutt, K.; Crist, M.; Eichenwald, E.C.; Greene, L.R.; Lee, G.; Maragakis, L.L.; Powell, K.; Priebe, G.P.; et al. Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2022, 43, 687–713. [Google Scholar] [CrossRef]
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef] [PubMed]
- Agency for Healthcare Research and Quality. Estimating the Additional Hospital Inpatient Cost and Mortality Associated With Selected Hospital-Acquired Conditions. 2017. Available online: https://www.ahrq.gov/hai/pfp/haccost2017-results.html (accessed on 16 March 2023).
- Rouze, A.; Cottereau, A.; Nseir, S. Chronic obstructive pulmonary disease and the risk for ventilator-associated pneumonia. Curr. Opin. Crit. Care 2014, 20, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.; Yang, Z.; Tang, X.; Yuan, Q.; Deng, L.; Sun, X. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst. Rev. 2016, 2016, CD009946. [Google Scholar] [CrossRef]
- Klompas, M.; Speck, K.; Howell, M.D.; Greene, L.R.; Berenholtz, S.M. Reappraisal of routine oral care with chlorhexidine gluconate for patients receiving mechanical ventilation: Systematic review and meta-analysis. JAMA Intern. Med. 2014, 174, 751–761. [Google Scholar] [CrossRef]
- Latorre, M.C.; Pérez-Granda, M.J.; Savage, P.B.; Alonso, B.; Martín-Rabadán, P.; Samaniego, R.; Bouza, E.; Muñoz, P.; Guembe, M. Endotracheal tubes coated with a broad-spectrum antibacterial ceragenin reduce bacterial biofilm in an in vitro bench top model. J. Antimicrob. Chemother. 2021, 76, 1168–1173. [Google Scholar] [CrossRef]
- Luyt, C.E.; Hékimian, G.; Koulenti, D.; Chastre, J. Microbial cause of ICU-acquired pneumonia: Hospital-acquired pneumonia versus ventilator-associated pneumonia. Curr. Opin. Crit. Care 2018, 24, 332–338. [Google Scholar] [CrossRef]
- Girard, T.D.; Alhazzani, W.; Kress, J.P.; Ouellette, D.R.; Schmidt, G.A.; Truwit, J.D.; Burns, S.M.; Epstein, S.K.; Esteban, A.; Fan, E.; et al. An Official American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Rehabilitation Protocols, Ventilator Liberation Protocols, and Cuff Leak Tests. Am. J. Respir. Crit. Care Med. 2017, 195, 120–133. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, W.; Cai, Z.; Liu, J.; Wu, J.; Deng, Y.; Yu, K.; Chen, X.; Zhu, L.; Ma, J.; et al. Early mobilization of critically ill patients in the intensive care unit: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0223185. [Google Scholar] [CrossRef]
- Wang, J.; Ren, D.; Liu, Y.; Wang, Y.; Zhang, B.; Xiao, Q. Effects of early mobilization on the prognosis of critically ill patients: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2020, 110, 103708. [Google Scholar] [CrossRef] [PubMed]
- Waldauf, P.; Jiroutková, K.; Krajčová, A.; Puthucheary, Z.M.; Duška, F. Effects of Rehabilitation Interventions on Clinical Outcomes in Critically Ill Patients: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Care Med. 2020, 48, 1055–1065. [Google Scholar] [CrossRef]
- Granton, D.; Chaudhuri, D.; Wang, D.H.; Einav, S.; Helviz, Y.; Mauri, T.; Mancebo, J.; Frat, J.-P.; Jog, S.; Hernandez, G.; et al. High-Flow Nasal Cannula Compared With Conventional Oxygen Therapy or Noninvasive Ventilation Immediately Postextubation: A Systematic Review and Meta-Analysis. Crit. Care Med. 2020, 48, e1129–e1136. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, D.; Granton, D.; Wang, D.X.; Burns, K.E.; Helviz, Y.; Einav, S.; Trivedi, V.; Mauri, T.; Ricard, J.D.; Mancebo, J.; et al. High-Flow Nasal Cannula in the Immediate Postoperative Period: A Systematic Review and Meta-analysis. Chest 2020, 158, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Granton, D.; Wang, D.X.; Einav, S.; Burns, K.E.A. High-flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: Author’s reply. Intensive Care Med. 2019, 45, 1171. [Google Scholar] [CrossRef]
- Ferreyro, B.L.; Angriman, F.; Munshi, L.; Del Sorbo, L.; Ferguson, N.D.; Rochwerg, B.; Ryu, M.J.; Saskin, R.; Wunsch, H.; da Costa, B.R.; et al. Association of Noninvasive Oxygenation Strategies with All-Cause Mortality in Adults With Acute Hypoxemic Respiratory Failure: A Systematic Review and Meta-analysis. JAMA 2020, 324, 57–67. [Google Scholar] [CrossRef]
- Comellini, V.; Pacilli, A.M.G.; Nava, S. Benefits of non-invasive ventilation in acute hypercapnic respiratory failure. Respirology 2019, 24, 308–317. [Google Scholar] [CrossRef]
- Bourke, S.C.; Piraino, T.; Pisani, L.; Brochard, L.; Elliott, M.W. Beyond the guidelines for non-invasive ventilation in acute respiratory failure: Implications for practice. Lancet Respir. Med. 2018, 6, 935–947. [Google Scholar] [CrossRef]
- Chandra, D.; Stamm, J.A.; Taylor, B.; Ramos, R.M.; Satterwhite, L.; Krishnan, J.A.; Mannino, D.; Sciurba, F.C.; Holguín, F. Outcomes of Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease in the United States, 1998–2008. Am. J. Respir. Crit. Care Med. 2012, 185, 152–159. [Google Scholar] [CrossRef]
- Keenan, S.P.; Sinuff, T.; Cook, D.J.; Hill, N.S. Does noninvasive positive pressure ventilation improve outcome in acute hypoxemic respiratory failure? A systematic review. Crit. Care Med. 2004, 32, 2516–2523. [Google Scholar] [CrossRef]
- Lindenauer, P.K.; Stefan, M.S.; Shieh, M.-S.; Pekow, P.S.; Rothberg, M.B.; Hill, N.S. Hospital Patterns of Mechanical Ventilation for Patients with Exacerbations of COPD. Ann. Am. Thorac. Soc. 2015, 12, 402–409. [Google Scholar] [CrossRef]
- Al-Rajhi, A.; Murad, A.; Li, P.; Shahin, J. Outcomes and predictors of failure of non-invasive ventilation in patients with community acquired pneumonia in the ED. Am. J. Emerg. Med. 2018, 36, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Conti, G.; Moro, M.; Esquinas, A.; Gonzalez-Diaz, G.; Confalonieri, M.; Pelaia, P.; Principi, T.; Gregoretti, C.; Beltrame, F.; et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: A multi-center study. Intensiv. Care Med. 2001, 27, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Frat, J.-P.; Thille, A.W.; Mercat, A.; Girault, C.; Ragot, S.; Perbet, S.; Prat, G.; Boulain, T.; Morawiec, E.; Cottereau, A.; et al. High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure. N. Engl. J. Med. 2015, 372, 2185–2196. [Google Scholar] [CrossRef] [PubMed]
- Grieco, D.L.; Menga, L.S.; Eleuteri, D.; Antonelli, M. Patient self-inflicted lung injury: Implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol. 2019, 85, 1014–1023. [Google Scholar] [CrossRef]
- Carteaux, G.; Parfait, M.; Combet, M.; Haudebourg, A.-F.; Tuffet, S.; Dessap, A.M. Patient-Self Inflicted Lung Injury: A Practical Review. J. Clin. Med. 2021, 10, 2738. [Google Scholar] [CrossRef]
- Carteaux, G.; Millán-Guilarte, T.; De Prost, N.; Razazi, K.; Abid, S.; Thille, A.W.; Schortgen, F.; Brochard, L.; Brun-Buisson, C.; Dessap, A.M. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit. Care Med. 2016, 44, 282–290. [Google Scholar] [CrossRef]
- MacIntyre, N.R. Ventilator-associated pneumonia: The role of ventilator management strategies. Respir. Care 2005, 50, 766–772, discussion 772–773. [Google Scholar]
- Baldomero, A.K.; Skarda, P.K.; Marini, J.J. Marini, Driving Pressure: Defining the Range. Respir. Care 2019, 64, 883–889. [Google Scholar] [CrossRef]
- Amato, M.B.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.; Mercat, A.; et al. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 2015, 372, 747–755. [Google Scholar] [CrossRef]
No NIVO (N = 12,518) | CPAP (N = 1879) | HFNC (N = 690) | BIPAP (N = 197) | Combo (N = 2018) | Total (N = 17,302) | |
---|---|---|---|---|---|---|
Age at ICU admission | 63 (51, 72) | 66 (57, 74) | 62 (50, 70) | 65 (54, 72) | 65 (55, 73) | 64 (52, 72) |
Sex (male) | 7778 (62.1) | 1241 (66.1) | 414 (60.0) | 113 (57.4) | 1148 (56.9) | 10,694 (61.8) |
Race | ||||||
White | 10,710 (85.6) | 1672 (89.0) | 589 (85.4) | 173 (87.8) | 1795 (88.9) | 14,939 (86.3) |
African American | 743 (5.9) | 90 (4.8) | 50 (7.2) | 9 (4.6) | 75 (3.7) | 967 (5.6) |
Unknown | 207 (1.7) | 23 (1.2) | 10 (1.4) | 2 (1.0) | 36 (1.8) | 278 (1.6) |
Choose not to disclose | 105 (0.8) | 11 (0.6) | 6 (0.9) | 0 (0.0) | 13 (0.6) | 135 (0.8) |
Other | 753 (6.0) | 83 (4.4) | 35 (5.1) | 13 (6.6) | 99 (4.9) | 983 (5.7) |
Ethnicity | ||||||
Hispanic or Latino | 338 (2.7) | 34 (1.8) | 28 (4.1) | 6 (3.0) | 47 (2.3) | 453 (2.6) |
Not Hispanic or Latino | 11,537 (92.2) | 1770 (94.2) | 620 (89.9) | 180 (91.4) | 1870 (92.7) | 15,977 (92.3) |
Unknown | 265 (2.1) | 36 (1.9) | 16 (2.3) | 5 (2.5) | 45 (2.2) | 367 (2.1) |
Choose not to disclose | 160 (1.3) | 19 (1.0) | 12 (1.7) | 2 (1.0) | 26 (1.3) | 219 (1.3) |
Unable to provide | 47 (0.4) | 4 (0.2) | 2 (0.3) | 0 (0.0) | 5 (0.2) | 58 (0.3) |
Other | 171 (1.4) | 16 (0.9) | 12 (1.7) | 4 (2.0) | 25 (1.2) | 228 (1.3) |
Hypertension | 7014 (56.0) | 1319 (70.2) | 364 (52.8) | 127 (64.5) | 1279 (63.4) | 10,103 (58.4) |
Asthma | 1199 (9.6) | 254 (13.5) | 63 (9.1) | 32 (16.2) | 294 (14.6) | 1842 (10.6) |
Solid organ malignancy | 2570 (20.5) | 363 (19.3) | 129 (18.7) | 48 (24.4) | 394 (19.5) | 3504 (20.3) |
CHF | 2473 (19.8) | 559 (29.7) | 166 (24.1) | 67 (34.0) | 652 (32.3) | 3917 (22.6) |
COPD | 1431 (11.4) | 341 (18.1) | 120 (17.4) | 50 (25.4) | 540 (26.8) | 2482 (14.3) |
ILD | 302 (2.4) | 59 (3.1) | 63 (9.1) | 10 (5.1) | 106 (5.3) | 540 (3.1) |
CKD | 3221 (25.7) | 609 (32.4) | 154 (22.3) | 67 (34.0) | 628 (31.1) | 4679 (27.0) |
Hematologic malignancy | 201 (1.6) | 42 (2.2) | 17 (2.5) | 9 (4.6) | 59 (2.9) | 328 (1.9) |
Liver disease | 1331 (10.6) | 132 (7.0) | 59 (8.6) | 20 (10.2) | 162 (8.0) | 1704 (9.8) |
Lymphoma | 376 (3.0) | 50 (2.7) | 27 (3.9) | 24 (12.2) | 116 (5.7) | 593 (3.4) |
PVD | 858 (6.9) | 150 (8.0) | 49 (7.1) | 28 (14.2) | 203 (10.1) | 1288 (7.4) |
Bronchiectasis | 197 (1.6) | 36 (1.9) | 30 (4.3) | 5 (2.5) | 61 (3.0) | 329 (1.9) |
Solid organ transplant | 1432 (11.4) | 168 (8.9) | 141 (20.4) | 17 (8.6) | 157 (7.8) | 1915 (11.1) |
Bone marrow/stem cell transplant | 3079 (24.6) | 473 (25.2) | 182 (26.4) | 79 (40.1) | 604 (29.9) | 4417 (25.5) |
COVID-19 at admission | 196 (1.6) | 32 (1.7) | 51 (7.4) | 5 (2.5) | 98 (4.9) | 382 (2.2) |
SOFA score at ICU admission | 9 (6, 12) | 10 (6.5, 13.5) | 10 (7, 13) | 10 (7, 13) | 8 (4, 12) | 9 (6, 12) |
APACHE 3 score at ICU admission | 101 (78, 124) | 104 (785, 129.5) | 103 (80, 126) | 98.5 (73, 124) | 105 (81.5, 128.5) | 102 (79, 125) |
No NIVO (N = 12,518) | CPAP (N = 1879) | HFNC (N = 690) | BIPAP (N = 197) | Combo (N = 2018) | Total (N = 17,302) | |
---|---|---|---|---|---|---|
VAP | 285 (2.3) | 30 (1.6) | 17 (2.5) | 16 (8.1) | 96 (4.8) | 444 (2.6) |
ICU length of stay, days | 2 (1, 4) | 3 (2, 6) | 6 (3, 11) | 5 (2, 11) | 6 (3, 11) | 3 (1, 6) |
Length of NIVO, days | N/A | 7 (1, 17) | 8 (1, 17) | 6 (1, 13) | 7 (1, 17) | 7 (1, 17) * |
Hospital LOS, days | 8 (5, 15) | 10 (6, 18) | 16 (9, 32) | 20 (9, 42) | 15 (9, 27) | 9 (5, 18) |
KM Hospital LOS ** | 8 (5, 18) | 10 (7, 20) | 20 (10, 41) | 28 (9, 58) | 17 (10, 33) | 10 (6, 21) |
Death | 3274 (26.2) | 455 (24.2) | 242 (35.1) | 88 (44.7) | 867 (43.0) | 4926 (28.5) |
Association with in-Hospital VAP | ||||
---|---|---|---|---|
Unadjusted Analysis | Multivariable Analysis | |||
NIVO Type | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
None | Reference | N/A | Reference | N/A |
CPAP | 0.70 (0.48, 1.02) | 0.062 | 0.72 (0.49, 1.05) | 0.091 |
HFNC | 1.08 (0.66, 1.78) | 0.75 | 0.97 (0.58, 1.60) | 0.89 |
BiPAP | 3.79 (2.25, 6.41) | <0.001 | 3.11 (1.80, 5.37) | <0.001 |
Combo | 2.14 (1.69, 2.72) | <0.001 | 1.91 (1.49, 2.44) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saunders, H.; Khadka, S.; Shrestha, R.; Balavenkataraman, A.; Hochwald, A.; Ball, C.; Helgeson, S.A. The Association between Non-Invasive Ventilation and the Rate of Ventilator-Associated Pneumonia. Diseases 2023, 11, 151. https://doi.org/10.3390/diseases11040151
Saunders H, Khadka S, Shrestha R, Balavenkataraman A, Hochwald A, Ball C, Helgeson SA. The Association between Non-Invasive Ventilation and the Rate of Ventilator-Associated Pneumonia. Diseases. 2023; 11(4):151. https://doi.org/10.3390/diseases11040151
Chicago/Turabian StyleSaunders, Hollie, Subekshya Khadka, Rabi Shrestha, Arvind Balavenkataraman, Alexander Hochwald, Colleen Ball, and Scott A. Helgeson. 2023. "The Association between Non-Invasive Ventilation and the Rate of Ventilator-Associated Pneumonia" Diseases 11, no. 4: 151. https://doi.org/10.3390/diseases11040151
APA StyleSaunders, H., Khadka, S., Shrestha, R., Balavenkataraman, A., Hochwald, A., Ball, C., & Helgeson, S. A. (2023). The Association between Non-Invasive Ventilation and the Rate of Ventilator-Associated Pneumonia. Diseases, 11(4), 151. https://doi.org/10.3390/diseases11040151