First Principle Investigation of Electronic, Transport, and Bulk Properties of Zinc-Blende Magnesium Sulfide
Abstract
1. Introduction
2. Computational Method
3. Results
3.1. Electronic Properties
3.2. Transport Properties
3.3. Structural Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uesugi, K.; Obinata, T.; Suemune, I.; Kumano, H.; Nakahara, J. Epitaxial growth of zinc-blende ZnSe/MgS superlattices on (001) GaAs. Appl. Phys. Lett. 1996, 68, 844–846. [Google Scholar] [CrossRef][Green Version]
- Konczewicz, L.; Bigenwald, P.; Cloitre, T.; Chibane, M.; Ricou, R.; Testud, P.; Briot, O.; Aulombard, R. MOVPE growth of zincblende magnesium sulphide. J. Cryst. Growth 1996, 159, 117–120. [Google Scholar] [CrossRef]
- Stockton, L.D.; Ng, T.L.; Maung, N.; Wright, A. Growth of MgS by MOVPE: The choice of sulphur precursor. J. Mater. Sci. Mater. Electron. 1998, 9, 207–210. [Google Scholar] [CrossRef]
- Teraguchi, N.; Mouri, H.; Tomomura, Y.; Suzuki, A.; Taniguchi, H.; Rorison, J.; Duggan, G. Growth of ZnSe/MgS strained-layer superlattices by molecular beam epitaxy. Appl. Phys. Lett. 1995, 67, 2945–2947. [Google Scholar] [CrossRef]
- Bradford, C.; O’Donnell, C.; Urbaszek, B.; Balocchi, A.; Morhain, C.; Prior, K.A.; Cavenett, B. Growth of zinc blende MgS/ZnSe single quantum wells by molecular-beam epitaxy using ZnS as a sulphur source. Appl. Phys. Lett. 2000, 76, 3929–3931. [Google Scholar] [CrossRef]
- Pandey, R.; Jaffe, J.E.; Kunz, A.B. Ab initioband-structure calculations for alkaline-earth oxides and sulfides. Phys. Rev. B 1991, 43, 9228–9237. [Google Scholar] [CrossRef]
- Haase, M.A.; Qiu, J.; Depuydt, J.M.; Cheng, H. Blue-green laser diodes. Appl. Phys. Lett. 1991, 59, 1272–1274. [Google Scholar] [CrossRef]
- Albin, S.; Satira, J.D.; Livingston, D.L.; Shull, T.A. Stimulated Electronic Transition Concept for an Erasable Optical Memory. Jpn. J. Appl. Phys. 1992, 31, 715–719. [Google Scholar] [CrossRef]
- Lai, Y.-H.; Cheung, W.-Y.; Lok, S.-K.; Wong, G.K.L.; Ho, S.-K.; Tam, K.-W.; Sou, I.-K. Rocksalt MgS solar blind ultra-violet detectors. AIP Adv. 2012, 2, 012149. [Google Scholar] [CrossRef]
- Nakayama, Y.; Matsumoto, R.; Kumagae, K.; Mori, D.; Mizuno, Y.; Hosoi, S.; Kamiguchi, K.; Koshitani, N.; Inaba, Y.; Kudo, Y.; et al. Zinc Blende Magnesium Sulfide in Rechargeable Magnesium-Sulfur Batteries. Chem. Mater. 2018, 30, 6318–6324. [Google Scholar] [CrossRef]
- Bhandari, U.; Bamba, C.O.; Malozovsky, Y.; Bagayoko, D. Predictions of Electronic, Transport, and Structural Properties of Magnesium Sulfide (MgS) in the Rocksalt Structure. J. Mod. Phys. 2018, 9, 1773–1784. [Google Scholar] [CrossRef][Green Version]
- Jha, P.K.; Talati, M. Mechanical, elastic and anharmonic properties of zinc blende MgS compound. Phys. Status Solidi B 2003, 239, 291–296. [Google Scholar] [CrossRef]
- Drief, F.; Tadjer, A.; Mesri, D.; Aourag, H. First principles study of structural, electronic, elastic and optical properties of MgS, MgSe and MgTe. Catal. Today 2004, 89, 343–355. [Google Scholar] [CrossRef]
- Duman, S.; Bağcı, S.; Tütüncü, H.M.; Srivastava, G.P. First-principles studies of ground-state and dynamical properties of MgS, MgSe, and MgTe in the rocksalt, zinc blende, wurtzite, and nickel arsenide phases. Phys. Rev. B 2006, 73, 205201–205214. [Google Scholar] [CrossRef]
- Lee, S.-G.; Chang, K.J. First-principles study of the structural properties of MgS-, MgSe-, ZnS-, and ZnSe-based superlattices. Phys. Rev. B 1995, 52, 1918–1925. [Google Scholar] [CrossRef]
- Rached, D.; Benkhettou, N.; Soudini, B.; Abbar, B.; Sekkal, N.; Driz, M. Electronic structure calculationsof magnesium chalcogenides MgS and MgSe. Phys. Status Solidi B 2003, 240, 565–573. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Chen, Y.-H.; Zhou, P.; Han, X.-Y.; Liu, Z.-J. Ab Initio Calculations of Structural, Electronic, and Mechanical Stability Properties of Magnesium Sulfide. Z. Naturforschung A 2014, 69, 403–410. [Google Scholar] [CrossRef]
- Tairi, L.; Touam, S.; Boumaza, A.; Boukhtouta, M.; Meradji, H.; Ghemid, S.; Bin-Omran, S.; Hassan, F.E.H.; Khenata, R. Phase stability and electronic behavior of MgS, MgSe and MgTe compounds. Phase Transit. 2017, 90, 929–941. [Google Scholar] [CrossRef]
- Hassan, F.E.H.; Bleybel, A.; Hijazi, A.; Alaeddine, A.; Beydoun, B.; Zoaeter, M. Structural and electronic properties of Zn1−xMgxSySe1−y alloys. Mater. Lett. 2007, 61, 1178–1182. [Google Scholar] [CrossRef]
- Noor, N.A.; Shaukat, A. AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS. Int. J. Mod. Phys. B 2012, 26, 1250168. [Google Scholar] [CrossRef]
- Okuyama, H.; Kishita, Y.; Ishibashi, A. Quaternary alloyZn1−xMgxSySe1−y. Phys. Rev. B 1998, 57, 2257–2263. [Google Scholar] [CrossRef]
- Soldatov, A.V.; Kravtsova, A.N.; Fleet, M.E.; Liu, X. Unoccupied Electronic States of MgS, CaS, FeS XRay Absorption Fine Structure Theoretical Analysis. Phys. Scr. 2005, 2005, T115. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980, 45, 566–569. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Bagayoko, D. Understanding density functional theory (DFT) and completing it in practice. AIP Adv. 2014, 4, 127104. [Google Scholar] [CrossRef]
- Bagayoko, D.; Franklin, L. Density-functional theory band gap of wurtzite InN. J. Appl. Phys. 2005, 97, 123708. [Google Scholar] [CrossRef]
- Bagayoko, D.; Franklin, L.; Zhao, G.L. Predictions of electronic, structural, and elastic properties of cubic InN. J. Appl. Phys. 2004, 96, 4297–4301. [Google Scholar] [CrossRef]
- Bagayoko, D.; Zhao, G.L.; Fan, J.D.; Wang, J.T. Ab initiocalculations of the electronic structure and optical properties of ferroelectric tetragonal. J. Phys. Condens. Matter 1998, 10, 5645–5655. [Google Scholar] [CrossRef]
- Zhao, G.L.; Bagayoko, D.; Williams, T.D. Local-density-approximation prediction of electronic properties of GaN, Si, C, and RuO2. Phys. Rev. B 1999, 60, 1563–1572. [Google Scholar] [CrossRef]
- Ekuma, C.E.; Jarrell, M.; Moreno, J.; Bagayoko, D. Re-examining the electronic structure of germanium: A first-principle study. Phys. Lett. A 2013, 377, 2172–2176. [Google Scholar] [CrossRef][Green Version]
- Franklin, L.; Ekuma, C.; Zhao, G.L.; Bagayoko, D. Density functional theory description of electronic properties of wurtzite zinc oxide. J. Phys. Chem. Solids 2013, 74, 729–736. [Google Scholar] [CrossRef]
- Bagayoko, D. Comprendre la thÉorie de la fonctionnelle de la densitÉ et la completer dans la pratique. In Proceedings of the Malian Symposium of Applied Sciences (MSAS), Bamako, Mali, 3–8 August 2014; pp. 251–258. [Google Scholar]
- Stewart, A.D. Ab-initio Calculations of Electronic, Transport, and Bulk Properties of cubic Boron Nitride (zb-BN). J. Adv. Phys. 2015, 9, 2277–2286. [Google Scholar] [CrossRef]
- Ekuma, C.E.; Bagayoko, D. Ab-initioElectronic and Structural Properties of Rutile Titanium Dioxide. Jpn. J. Appl. Phys. 2011, 50, 10R. [Google Scholar] [CrossRef]
- Feibelman, P.J.; Appelbaum, J.A.; Hamann, D.R. Electronic structure of a Ti(0001) film. Phys. Rev. B 1979, 20, 1433–1443. [Google Scholar] [CrossRef]
- Harmon, B.N.; Weber, W.; Hamann, D.R. Total-energy calculations for Si with a first-principles linear-combination-of-atomic-orbitals method. Phys. Rev. B 1982, 25, 1109–1115. [Google Scholar] [CrossRef]
- Kravtsova, A.N.; Stekhin, I.E.; Soldatov, A.V.; Liu, X.; Fleet, M.E. Electronic structure ofMS(M=Ca,Mg,Fe,Mn): X-ray absorption analysis. Phys. Rev. B 2004, 69, 527–535. [Google Scholar] [CrossRef]
- Deguchi, D.; Sato, K.; Kino, H.; Kotani, T. Accurate energy bands calculated by the hybrid quasiparticle self-consistentGWmethod implemented in the ecalj package. Jpn. J. Appl. Phys. 2016, 55, 51201. [Google Scholar] [CrossRef]
- Kumano, H.; Nashiki, H.; Suemune, I.; Arita, M.; Obinata, T.; Suzuki, H.; Uesugi, K.; Nakahara, J. Excitonic properties of zinc-blende ZnSe/MgS superlattices studied by reflection spectroscopy. Phys. Rev. B 1997, 55, 4449–4455. [Google Scholar] [CrossRef]
- Wolverson, D.; Bird, D.; Bradford, C.; Prior, K.A.; Cavenett, B.C. Lattice dynamics and elastic properties of zinc-blende MgS. Phys. Rev. B 2001, 64. [Google Scholar] [CrossRef]
- Saib, S.; Bouarissa, N.; Rodriguez-Hernandez, P.; Muñoz, A. Ab initio lattice dynamics and piezoelectric properties of MgS and MgSe alkaline earth chalcogenides. Eur. Phys. J. B 2010, 73, 185–193. [Google Scholar] [CrossRef]
- Durandurdu, M. New transformation mechanism for a zinc-blende to rocksalt phase transformation in MgS. J. Phys. Condens. Matter 2009, 21, 452204. [Google Scholar] [CrossRef]
- Bagayoko, D. Contraction of gaussian basis sets and the total energy of fcc copper. Int. J. Quantum Chem. 1983, 24, 527–535. [Google Scholar] [CrossRef]
- Bagayoko, D. Understanding the Relativistic Generalization of Density Functional Theory (DFT) and Completing It in Practice. J. Mod. Phys. 2016, 7, 911–919. [Google Scholar] [CrossRef][Green Version]
Computational Technique | Potential | Direct Band Gap, Eg (eV) |
---|---|---|
FP-LAPW | LDA | 3.37 [13] |
Plane wave pseudopotential approach | LDA | 3.10 [14] |
Ab-initio | LDA | 3.42 [15] |
Full Potential Linearized Augmented plane wave Method (FP-LMTO) | LDA | 3.46 [16] |
Plane wave pseudopotential method | GGA | 3.38 [17] |
FP-LAPW | GGA | 3.362 [18] |
FP-LAPW | GGA | 3.33 [19] |
FP-LMTO | GGA | 3.37 [16] |
FP-LAPW | EV-GGA | 3.60 [20] |
FP-LAPW | WC-GGA | 3.20 [20] |
FP-LAPW | mBJ | 5.193 [18] |
Full multiple scattering method, Muffin Tin (MT) | Crystal MT potential, with touching spheres | 4.6 ± 0.3 [21] |
Modified dielectric theory | Not Applicable | 4.62 [22] |
Photoluminescence measurements of zb-MgS thin film | - | 4.8 [5] |
Experimental using XRD measurement | - | 4.45 ± 0.2 [22] |
Experiment using low angle XRD measurement | - | 4.4 [4] |
Calculation No. | Magnesium (Mg2+) (1s2-Core) | Sulfur (S2−) (1s22s22p2-Core) | No. of Valence Functions | Energy Gap (eV) |
---|---|---|---|---|
I | 2s22p63p0 | 3s23p6 | 2 × (7 + 4) = 22 | 7.658 (Γ-X) |
II | 2s22p63p0 | 3s23p64p0 | 2 × (7 + 7) = 28 | 7.001 (Γ-X) |
III | 2s22p63p03s0 | 3s23p64p0 | 2 × (8 + 7) = 30 | 6.414 (Γ-Γ) |
IV | 2s22p63p03s0 | 3s23p64p04s0 | 2 × (8 + 8) = 32 | 4.435 (Γ-Γ) |
V | 2s22p63p03s04p0 | 3s23p64p04s0 | 2 × (11 + 8) = 38 | 4.435 (Γ-Γ) |
VI | 2s22p63p03s04p04s0 | 3s23p64p04s0 | 2 × (12 + 8) = 40 | 4.419 (Γ-Γ) |
L-Point | Γ-Point | X-Point | K-Point |
---|---|---|---|
18.933 | 16.064 | 13.458 | 12.770 |
10.806 | 9.595 | 13.458 | 12.736 |
10.566 | 9.595 | 12.291 | 12.128 |
10.566 | 9.595 | 7.831 | 9.755 |
6.464 | 4.435 | 7.791 | 7.919 |
−0.390 | 0.000 | −1.135 | −0.899 |
−0.390 | 0.000 | −1.135 | −1.884 |
−3.157 | 0.000 | −2.917 | −2.592 |
−10.648 | −11.360 | −10.415 | −10.428 |
Types and Directions of Effective Masses | Values of Effective Masses (mo) |
---|---|
Me (Γ-L) 111 | 0.306 |
Me (Γ-X) 100 | 0.317 |
Me (Γ-K) 110 | 0.314 |
Mhh1 (Γ-L) 111 | 3.255 |
Mhh1 (Γ-X) 100 | 1.446 |
Mhh1 (Γ-K) 110 | 2.035 |
Mhh2 (Γ-L) 111 | 3.025 |
Mhh2 (Γ-X) 100 | 1.446 |
Mhh2 (Γ-K) 110 | 1.595 |
Mlh (Γ-L) 111 | 0.309 |
Mlh (Γ-X) 100 | 0.408 |
Mlh (Γ-K) 110 | 0.371 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, U.; Ayirizia, B.A.; Malozovsky, Y.; Franklin, L.; Bagayoko, D. First Principle Investigation of Electronic, Transport, and Bulk Properties of Zinc-Blende Magnesium Sulfide. Electronics 2020, 9, 1791. https://doi.org/10.3390/electronics9111791
Bhandari U, Ayirizia BA, Malozovsky Y, Franklin L, Bagayoko D. First Principle Investigation of Electronic, Transport, and Bulk Properties of Zinc-Blende Magnesium Sulfide. Electronics. 2020; 9(11):1791. https://doi.org/10.3390/electronics9111791
Chicago/Turabian StyleBhandari, Uttam, Blaise Awola Ayirizia, Yuriy Malozovsky, Lashounda Franklin, and Diola Bagayoko. 2020. "First Principle Investigation of Electronic, Transport, and Bulk Properties of Zinc-Blende Magnesium Sulfide" Electronics 9, no. 11: 1791. https://doi.org/10.3390/electronics9111791
APA StyleBhandari, U., Ayirizia, B. A., Malozovsky, Y., Franklin, L., & Bagayoko, D. (2020). First Principle Investigation of Electronic, Transport, and Bulk Properties of Zinc-Blende Magnesium Sulfide. Electronics, 9(11), 1791. https://doi.org/10.3390/electronics9111791