An On-Glass Optically Transparent Monopole Antenna with Ultrawide Bandwidth for Solar Energy Harvesting
Abstract
1. Introduction
2. Antenna Design and Configuration
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Guan, Y.; He, S. Transparent 5.8 GHz filter based on graphene. In Proceedings of the IEEE Microwave Symposium, Honololu, HI, USA, 4–9 June 2017. [Google Scholar]
- Kocia, C.; Hum, S. Design of an Optically Transparent Reflectarray for Solar Applications Using Indium Tin Oxide. IEEE Trans. Antennas Propag. 2016, 64, 2884–2893. [Google Scholar] [CrossRef]
- Malek, M.A.; Hakimi, S.; Rahim, S.K.A.; Evizal, A.K. Dual-Band CPW-Fed Transparent Antenna for Active RFID Tags. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 919–922. [Google Scholar] [CrossRef]
- Peter, T.; Rahman, T.A.; Cheung, S.W.; Nilavalan, R.; Vilches, A. A Novel Transparent UWB Antenna for Photovoltaic Solar Panel Integration and RF Energy Harvesting. IEEE Trans. Antennas Propag. 2014, 62, 1844–1853. [Google Scholar]
- Simons, R.N.; Lee, R.Q. Feasibility study of optically transparent microstrip patch antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Montreal, QC, Canada, 13–18 July 1997; Volume 4, pp. 2100–2103. [Google Scholar]
- Harati, M.R.; Naser-Moghadasi, M.; Lotfi-Neyestanak, A.A.; Nikfarjam, A. Improving the Efficiency of Transparent Antenna Using Gold Nano Layer Deposition. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 4–7. [Google Scholar] [CrossRef]
- Wu, B.; Tuncer, H.M.; Naeem, M.; Yang, B.; Hao, Y. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Sci. Rep. 2014, 4, 4130. [Google Scholar] [CrossRef]
- Cai, L.; Xu, H.; Chu, D. Compact Liquid Crystal Based Tunable Band-Stop Filter with an Ultra-Wide Stopband by Using Wave Interference Technique. Int. J. Antennas Propag. 2017, 2017, 9670965. [Google Scholar]
- Katsounaros, A.; Hao, Y.; Collings, N.; Crossland, W.A. Optically transparent ultra-wideband antenna. Electron. Lett. 2009, 45, 722–723. [Google Scholar]
- Akbari, M.; Koohestani, M.; Ghobadi, C.; Nourinia, J. A new compact planar UWB monopole antenna. Int. J. RF Microw. Comput. Eng. 2015, 21, 216–220. [Google Scholar] [CrossRef]
- Wu, M.-T.; Chuang, M.-L. Multibroadband Slotted Bow-Tie Monopole Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 887–890. [Google Scholar]
- Al-Zayed, A.S.; Shameena, V.A. A novel FGCPW-fed flag-shaped UWB monopole antenna. Int. J. Microw. Wirel. Technol. 2016, 8, 319–326. [Google Scholar]
- Bakariya, P.S.; Dwari, S.; Sarkar, M. Triple band notch UWB printed monopole antenna with enhanced bandwidth. AEUE Int. J. Electron. Commun. 2015, 69, 26–30. [Google Scholar] [CrossRef]
- Beigi, P.; Nourinia, J.; Zehforoosh, Y. Compact CPW-fed spiral-patch monopole antenna with tuneable frequency for multiband applications. J. Instrum. 2018, 13, P04014. [Google Scholar] [CrossRef]
- Liu, L.; Cheung, S.W.; Azim, R.; Islam, M.T. A compact circular-ring antenna for ultra-wideband applications. Microw. Opt. Technol. Lett. 2011, 53, 2283–2288. [Google Scholar] [CrossRef]
- Liang, J.; Guo, L.; Chiau, C.C.; Chen, X.; Parini, C.G. Study of CPW-fed circular disc monopole antenna for ultra wideband applications. IEE Proc. Microw. Antennas Propag. 2005, 152, 520–526. [Google Scholar] [CrossRef]
- Ammann, M.J.; Chen, Z.N. Wideband monopole antennas for multi-band wireless systems. IEEE Antennas Propag. Mag. 2003, 45, 146–150. [Google Scholar] [CrossRef]
- Liang, J.; Chiau, C.C.; Chen, X.; Parini, C.G. Study of a printed circular disc monopole antenna for UWB systems. IEEE Trans. Antennas Propag. 2005, 53, 3500–3504. [Google Scholar] [CrossRef]
- Cai, L.; Xu, H.; Li, J.; Chu, D. High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications. Jpn. J. Appl. Phys. 2017, 56, 11701. [Google Scholar] [CrossRef]
- Cai, L.; Chu, D. Highly anisotropic LC material with low dielectric loss for the application of tunable notch filters. J. Electromagn. Waves Appl. 2019, 33, 1070–1081. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Piqué, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451–6461. [Google Scholar] [CrossRef]
- Porch, A.; Morgan, D.V.; Perks, R.M.; Jones, M.O.; Edwards, P.P. Electromagnetic absorption in transparent conducting films. J. Appl. Phys. 2004, 95, 4734–4737. [Google Scholar] [CrossRef]
- Colombel, F.; Castel, X.; Himdi, M.; Legeay, G. Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna. Sci. Meas. Technol. 2009, 3, 229–234. [Google Scholar] [CrossRef]
- Outaleb, N.; Pinel, J.; Drissi, M.; Bonnaud, O. Microwave planar antenna with RF-puttered indium tin oxide films. Microw. Opt. Technol. Lett. 2000, 24, 3–7. [Google Scholar] [CrossRef]
- Haraty, M.R.; Naser-Moghadasi, M.; Lotfi-Neyestanak, A.A.; Nikfarjam, A. Circular ring optically transparent antenna for ultra-wideband applications. ACES J. 2015, 30, 208–212. [Google Scholar]
Frequency (GHz) | 2 GHz | 4 GHz | 8 GHz | 14 GHz |
---|---|---|---|---|
Gain (dBi) for | 2.4 | 5 | 3.8 | 3.2 |
Gain (dBi) for | −2.5 | −0.2 | −2.9 | −4.9 |
Gain (dBi) for | −3.4 | −1.2 | −4.8 | −6.9 |
Gain (dBi) for | −9.8 | −8 | −13.5 | −14.7 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L. An On-Glass Optically Transparent Monopole Antenna with Ultrawide Bandwidth for Solar Energy Harvesting. Electronics 2019, 8, 916. https://doi.org/10.3390/electronics8090916
Cai L. An On-Glass Optically Transparent Monopole Antenna with Ultrawide Bandwidth for Solar Energy Harvesting. Electronics. 2019; 8(9):916. https://doi.org/10.3390/electronics8090916
Chicago/Turabian StyleCai, Longzhu. 2019. "An On-Glass Optically Transparent Monopole Antenna with Ultrawide Bandwidth for Solar Energy Harvesting" Electronics 8, no. 9: 916. https://doi.org/10.3390/electronics8090916
APA StyleCai, L. (2019). An On-Glass Optically Transparent Monopole Antenna with Ultrawide Bandwidth for Solar Energy Harvesting. Electronics, 8(9), 916. https://doi.org/10.3390/electronics8090916