# Enabling Non-Linear Energy Harvesting in Power Domain Based Multiple Access in Relaying Networks: Outage and Ergodic Capacity Performance Analysis

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- To the best of our knowledge, we are the first to consider a model where the impact of NEH is evaluated through two PDMA users’ performance. Taking the advantages of wireless power transfer in the EH scheme, an NEH-PDMA scheme, which consists of two PDMA users that are served by a relay with the possible capability of wireless EH from the base station, is developed.
- In conventional NOMA, the channel gains are often ordered to perform SIC at the receiver. Interestingly, this paper proposes another approach in which we considered such a proposed NEH-PDMA model. Quality of Service (QoS)-based decoding order [36] is the criterion to eliminate interference and then to extract the main expected signal for each NOMA user.
- Outage probability and ergodic capacity are calculated under the impact of the target rates, SNR, and location of the node in such a network. To consider the role of non-linear wireless power transfer, the saturation threshold of the energy harvesting receiver is the priority factor to evaluate the influence on system performance.

**Notation:**This paper needs some main notations to ease the understanding of the upcoming analyses. They are defined as follows: $E\left\{.\right\}$ shows the expectation computation. ${f}_{X}\left(.\right),{F}_{X}\left(.\right)$ denote the Probability Density Function (PDF) and Cumulative Distribution Function (CDF) of a random variable X, respectively. $Pr\left(.\right)$ represents the probability operation. $\mathbf{1}\left(C\right)$ denotes the identity function, $\mathbf{1}\left(C\right)=1$ if C holds and $\mathbf{1}\left(C\right)=0$ otherwise. $Ei(.)$ stands for the exponential integral function.

## 2. System Model

## 3. Outage Probability Analysis

#### 3.1. Outage Probability at User 1

**Proof.**

#### 3.2. Outage Probability at User 2

**Proof.**

**Proposition**

**1.**

**Proof.**

**Remark**

**1.**

#### 3.3. Asymptotic Analysis

## 4. Ergodic Capacity

#### 4.1. Ergodic Capacity for ${x}_{1}$

**Proof.**

#### 4.2. Ergodic Capacity for ${x}_{2}$

**Proof.**

#### 4.3. Asymptotic Analysis

**Proof.**

**Remark**

**2.**

## 5. Numerical Results

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

## Appendix B

## Appendix C

**Proof**

**of Equation (38)).**

**Proof**

**of Equation (39).**

## References

- Chih-Lin, I.; Rowell, C.; Han, S.; Xu, Z.; Li, G.; Pan, Z. Toward green and soft: A 5G perspective. IEEE Commun. Mag.
**2014**, 52, 66–73. [Google Scholar] - Islam, S.R.; Avazov, N.; Dobre, O.A.; Kwak, K.S. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Commun. Surv. Tutor.
**2016**, 19, 721–742. [Google Scholar] [CrossRef] - Do, D.T. Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommun. Syst.
**2016**, 62, 449–459. [Google Scholar] [CrossRef] - Dinh-Thuan, D.O. Power switching protocol for two-way relaying network under hardware impairments. Radioengineering
**2015**, 24, 765–771. [Google Scholar] - Tabassum, H.; Ali, M.S.; Hossain, E.; Hossain, M.J.; Kim, D.-I. Non-orthogonal multiple access (NOMA) in cellular uplink and downlink: Challenges and enabling techniques. In Proceedings of the IEEE Vehicular Technology Conference (VTC’2017 Spring), Sydney, Australia, 4–7 June 2017. [Google Scholar]
- Kim, J.; Lee, I. Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Commun. Lett.
**2015**, 19, 1949–1952. [Google Scholar] [CrossRef] - Do, D.-T.; Nguyen, Van M.-S.; Hoang, T.-A.; Voznak, M. NOMA-assisted multiple access scheme for IoT deployment: Relay selection model and secrecy performance improvement. Sensors
**2019**, 19, 736. [Google Scholar] [CrossRef] [PubMed] - Do, D.T. Optimal throughput under time power switching based relaying protocol in energy harvesting cooperative networks. Wireless Personal Commun.
**2016**, 87, 551–564. [Google Scholar] [CrossRef] - Lyu, B.; Yang, Z.; Gui, G. Backscatter assisted wireless powered communication networks with non-orthogonal multiple access. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
**2017**, 100, 1724–1728. [Google Scholar] [CrossRef] - Liu, Y.; Ding, Z.; Elkashlan, M.; Yuan, J. Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans. Veh. Technol.
**2016**, 65, 10152–10157. [Google Scholar] [CrossRef] - Zhang, Z.; Ma, Z.; Xiao, M.; Ding, Z.; Fan, P. Full-duplex device-to-device aided cooperative non-orthogonal multiple access. IEEE Trans. Veh. Technol.
**2017**, 66, 4467–4471. [Google Scholar] [CrossRef] - Zhong, C.; Zhang, Z. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun. Lett.
**2016**, 20, 2478–2481. [Google Scholar] [CrossRef] - Hedayati, M.; Kim, I.-M. On the Performance of OMA and NOMA in the Two-user SWIPT System. IEEE Trans. Veh. Technol.
**2018**, 67, 11258–11263. [Google Scholar] [CrossRef] - Wu, Z.; Lu, K.; Jiang, C.; Shao, X. Comprehensive Study and Comparison on 5G NOMA Schemes. IEEE Access
**2018**, 6, 18511–18519. [Google Scholar] [CrossRef] - Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett.
**2014**, 21, 1501–1505. [Google Scholar] [CrossRef] - Shi, S.; Yang, L.; Zhu, H. Outage balancing in downlink non-orthogonal multiple access with statistical channel state information. IEEE Trans. Wirel. Commun.
**2016**, 15, 4718–4731. [Google Scholar] [CrossRef] - Cui, J.; Liu, Y.; Ding, Z.; Fan, P.; Nallanathan, A. Optimal user scheduling and power allocation for millimeter wave noma systems. IEEE Trans. Wirel. Commun.
**2018**, 17, 1502–1517. [Google Scholar] [CrossRef] - Al-Imari, M.; Xiao, P.; Imran, M.A.; Tafazolli, R. Uplink non-orthogonal multiple access for 5G wireless networks. In Proceedings of the 2014 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona, Spain, 26–29 August 2014; pp. 781–785. [Google Scholar]
- Ding, Z.; Peng, M.; Poor, H.V. Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett.
**2015**, 19, 1462–1465. [Google Scholar] [CrossRef] - Wei, Z.; Dai, L.; Ng, D.W.K.; Yuan, J. Performance analysis of a hybrid downlink-uplink cooperative NOMA scheme. In Proceedings of the IEEE 86th Vehicular Technology Conference (VTC Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–7. [Google Scholar]
- Marshoud, H.; Kapinas, V.M.; Karagiannidis, G.K.; Muhaidat, S. Non-orthogonalmultiple access for visible light communications. IEEE Photonics Technol. Lett.
**2016**, 28, 51–54. [Google Scholar] [CrossRef] - Choi, J. Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Trans. Commun.
**2015**, 63, 791–800. [Google Scholar] [CrossRef] - Hanif, M.F.; Ding, Z.; Ratnarajah, T.; Karagiannidis, G.K. A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans. Signal Process.
**2016**, 64, 76–88. [Google Scholar] [CrossRef] - Sun, Q.; Han, S.; I, C.-L.; Pan, Z. On the ergodic capacity of MIMO NOMA systems. IEEE Wirel. Commun. Lett.
**2015**, 4, 405–408. [Google Scholar] [CrossRef] - Nguyen, X.-X.; Do, D.-T. Maximum Harvested Energy Policy in Full-Duplex Relaying Networks with SWIPT. Int. J. Commun. Syst. (Wiley)
**2017**, 30, e3359. [Google Scholar] [CrossRef] - Do, D.-T.; Nguyen, H.S.; Voznak, M.; Nguyen, T.S. Wireless powered relaying networks under imperfect channel state information: System performance and optimal policy for instantaneous rate. Radioengineering
**2017**, 26, 869–877. [Google Scholar] [CrossRef] - Nguyen, X.-X.; Do, D.-T. Optimal power allocation and throughput performance of full-duplex DF relaying networks with wireless power transfer-aware channel. EURASIP J. Wirel. Commun. Netw.
**2017**, 2017, 152. [Google Scholar] [CrossRef] - Nguyen, T.N.; Do, D.-T.; Tran, P.T.; Vozňák, M. Time Switching for Wireless Communications with Full-Duplex Relaying in Imperfect CSI Condition. KSII Trans. Internet Inf. Syst.
**2016**, 10, 4223–4239. [Google Scholar] - Nguyen, H.-S.; Do, D.-T.; Nguyen, T.-S.; Voznak, M. Exploiting hybrid time switching-based and power splitting-based relaying protocol in wireless powered communication networks with outdated channel state information. Automatika
**2017**, 58, 391–399. [Google Scholar] [CrossRef] - Nguyen, T.-L.; Do, D.T. Exploiting Impacts of Intercell Interference on SWIPT-assisted Non-orthogonal Multiple Access. Wirel. Commun. Mob. Comput.
**2018**, 2018, 2525492. [Google Scholar] [CrossRef] - Do, D.-T.; Nguyen, H.S. A Tractable Approach to Analyze the Energy-Aware Two-way Relaying Networks in Presence of Co-channel Interference. EURASIP J. Wirel. Commun. Netw.
**2016**, 2016, 271. [Google Scholar] [CrossRef] - Xiao, Y.; Hao, L.; Ma, Z.; Ding, Z.; Zhang, Z.; Fan, P. Forwarding strategy selection in dual-hop NOMA relaying systems. IEEE Commun. Lett.
**2018**, 22, 1644–1647. [Google Scholar] [CrossRef] - Wang, Y.; Wu, Y.; Zhou, F.; Wu, Y.; Chu, Z.; Wang, Y. Multi-Objective Resource Allocation in a NOMA Cognitive Radio Network With a Practical Non-Linear Energy Harvesting Model. In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017; pp. 1–6. [Google Scholar]
- Xie, X.; Chen, J.; Fu, Y. Outage Performance and QoS Optimization in Full-duplex System with Non-linear Energy Harvesting Model. IEEE Access
**2018**, 6, 44281–44290. [Google Scholar] [CrossRef] - Zhang, J.; Pan, G. Outage analysis of wireless-powered relaying MIMO systems with non-linear energy harvesters and imperfect CSI. IEEE Access
**2016**, 4, 7046–7053. [Google Scholar] [CrossRef] - Ding, Z.; Dai, H.; Poor, H.V. Relay selection for cooperative NOMA. IEEE Commun. Lett.
**2016**, 5, 416–419. [Google Scholar] [CrossRef] - Chaudhry, M.A.; Zubair, S.M. Generalized incomplete gamma functions with applications. J. Comput. Appl. Math.
**1994**, 55, 99–123. [Google Scholar] [CrossRef][Green Version] - Zheng, L.; Tse, D.N.C. Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Trans. Inf. Theory
**2003**, 49, 1073–1096. [Google Scholar] [CrossRef] - Hildebrand, E. Introduction to Numerical Analysis; Dover: New York, NY, USA, 1987. [Google Scholar]
- Jeffrey, A.; Zwillinger, D. Table of Integrals, Series, and Products; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nguyen, T.-L.; Nguyen, M.-S.V.; Do, D.-T.; Voznak, M.
Enabling Non-Linear Energy Harvesting in Power Domain Based Multiple Access in Relaying Networks: Outage and Ergodic Capacity Performance Analysis. *Electronics* **2019**, *8*, 817.
https://doi.org/10.3390/electronics8070817

**AMA Style**

Nguyen T-L, Nguyen M-SV, Do D-T, Voznak M.
Enabling Non-Linear Energy Harvesting in Power Domain Based Multiple Access in Relaying Networks: Outage and Ergodic Capacity Performance Analysis. *Electronics*. 2019; 8(7):817.
https://doi.org/10.3390/electronics8070817

**Chicago/Turabian Style**

Nguyen, Thanh-Luan, Minh-Sang Van Nguyen, Dinh-Thuan Do, and Miroslav Voznak.
2019. "Enabling Non-Linear Energy Harvesting in Power Domain Based Multiple Access in Relaying Networks: Outage and Ergodic Capacity Performance Analysis" *Electronics* 8, no. 7: 817.
https://doi.org/10.3390/electronics8070817