Abstract
With the aid of non-orthogonal multiple access (NOMA), this paper investigates simultaneous two-way communications for cooperative cognitive radio networks, where a group of secondary access points (APs) scattered over a primary cell not only serve their own users but also help the primary cell-edge users transmissions cooperatively. As a reward for the cooperation, these APs are granted full access to the primary frequency spectrum. To coordinate the two-way transmissions of the primary and secondary networks, we propose a spectrum-efficient cooperative scheme that only involves two transmission phases, and particularly, the two variable-length transmission phases endow the system with the capability of adapting to possible DL and UL traffic asymmetry. For the system design, we formulate a power minimization problem subject to the bidirectional transmission rate constraints of both networks. The formulated problem is shown to be nonlinear and nonconvex, and for the numerically efficient solution, we propose an iterative algorithm facilitated by the successive convex approximation technique. Simulation results show that the proposed design algorithm has fast convergence speed and is superior to the hybrid orthogonal multiple access and NOMA schemes.