Abstract
Recent advances in deep learning have had a significant impact on biomedical applications, driving precise actions in automated diagnostic processes. However, integrating neural networks into medical devices requires meeting strict requirements regarding computing power, energy efficiency, reconfigurability, and latency, essential conditions for real-time inference. Field-Programmable Gate Array (FPGA) architectures provide a high level of flexibility, performance, and parallel execution, thus making them a suitable option for the real-world implementation of machine learning (ML) and deep learning (DL) models in systems dedicated to the analysis of physiological signals. This paper presents a review of intelligent algorithms for electrocardiogram (ECG) signal classification, including Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks (LSTMs), and Convolutional Neural Networks (CNNs), which have been implemented on FPGA platforms. A comparative evaluation of the performances of these hardware-accelerated solutions is provided, focusing on their classification accuracy. At the same time, the FPGA families used are analyzed, along with the reported performances in terms of operating frequency, power consumption, and latency, as well as the optimization strategies applied in the design of deep learning hardware accelerators. The conclusions emphasize the popularity and efficiency of CNN architectures in the context of ECG signal classification. The study aims to offer a current overview and to support specialists in the field of FPGA design and biomedical engineering in the development of accelerators dedicated to physiological signals analysis.