Abstract
The proliferation of Internet of Things (IoT) applications in safety-critical domains, such as healthcare, smart transportation, and industrial automation, demands robust solutions for data integrity, traceability, and security that surpass the capabilities of centralized databases. This paper analyzes how blockchain technology can be integrated with core IoT service functions—including data management, security, device management, group coordination, and automated billing—to enhance immutability, trust, and operational efficiency. Our analysis identifies practical use cases such as consensus-driven tamper-proof storage, role-based access control, firmware integrity verification, and automated micropayments. These use cases showcase blockchain’s potential beyond traditional data storage. Building on this, we propose a novel framework that integrates a permissioned distributed ledger with a standardized IoT service layer platform through a Blockchain Interworking Proxy Entity (BlockIPE). This proxy dynamically maps IoT service functions to smart contracts, enabling flexible data routing to conventional databases or blockchains based on the application requirements. We implement a Dockerized prototype that integrates a C-based oneM2M platform with an Ethereum-compatible permissioned ledger (implemented using Hyperledger Besu) via BlockIPE, incorporating security features such as role-based access control. For performance evaluation, we use Ganache to isolate proxy-level overhead and scalability. At the proxy level, the blockchain-integrated path achieves processing latencies (≈86 ms) comparable to, and slightly faster than, the traditional database path. Although the end-to-end latency is inherently governed by on-chain confirmation (≈0.586–1.086 s), the scalability remains high (up to 100,000 TPS). This validates that the architecture secures IoT ecosystems with manageable operational overhead.