Abstract
This paper presents DeepMask-GPR, a novel deep learning framework for automatic detection and geometric estimation of buried cylindrical objects in ground-penetrating radar (GPR) B-scan images. Built upon Mask R-CNN, the proposed method integrates hyperbola detection, apex localization, and real-world coordinate mapping in an end-to-end architecture. A curvature-enhanced dual-channel input improves the visibility of weak hyperbolic patterns, while a quadratic regression loss guides the network to recover precise geometric parameters. DeepMask-GPR eliminates the need for raw signal data or manual post-processing, enabling robust and scalable deployment in field scenarios. On two public datasets, DeepMask-GPR achieves consistently higher TPR/IoU for spatial localization than baselines. On an in-house B-scan set, it attains low MAE/RMSE for radius estimation.