A Ku-Band Circularly Polarized Array Antenna Based on Vertical Virtual Ground
Abstract
1. Introduction
- (a)
- A VVG-enabled antenna element that reduces the resonant frequency without increasing size;
- (b)
- Enhanced circular polarization achieved via strong coupling between the square-ring radiator and stacked parasitic patch;
- (c)
- A practical low-profile Ku-band CP array with validated impedance and axial-ratio performance suitable for compact satellite communications.
2. The Design of the Antenna Element
2.1. Element Structure
2.2. VVG Structure
2.3. Radiating Patch Structure
2.4. Parasitic Patch Structure
3. The Operating Mechanism of Critical Parameter
4. The Design of the Antenna Array
4.1. 2 × 2 Array
4.2. 4 × 4 Array and 8 × 8 Array
5. Measurement and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Esmail, B.A.F.; Isleifson, D.; Shafai, L. A Ku-Band Compact Offset Cylindrical Reflector Antenna with High Gain for Low-Earth Orbit Sensing Applications. Sensors 2024, 24, 7535. [Google Scholar] [CrossRef]
- Malki, M.; Yang, L.; Gómez-García, R. Ku-Band Reflectionless Single- and Dual-Band Bandpass Filters in Groove Gap Waveguide. IEEE Trans. Microw. Theory Tech. 2025, 73, 5813–5827. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Xiang, L.; Kong, W.; Hong, W. Broadband Circularly Polarized Magnetoelectric Dipole Antenna and Array for K-Band and Ka-Band Satellite Communications. IEEE Trans. Antennas Propag. 2022, 70, 5907–5912. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.-C.; Keezer, D. Differential-Fed Wideband Circularly Polarized SIW Cavity-Backed Slot Antenna Array. Electronics 2025, 14, 2389. [Google Scholar] [CrossRef]
- Hui, W.; Guo, Y.; Xie, K.; Zhao, X. Investigation of Circularly Polarized Microstrip Antenna with Tri-Band Polarization Conversion Metamaterials. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2831–2835. [Google Scholar] [CrossRef]
- Hu, Y.; Pan, Y.M.; Di Yang, M. Circularly Polarized MIMO Dielectric Resonator Antenna with Reduced Mutual Coupling. IEEE Trans. Antennas Propag. 2020, 69, 3811–3820. [Google Scholar] [CrossRef]
- Tan, Q.; Fan, K.; Yu, W.; Wang, W.; Liu, L.; Luo, G.Q. A Circularly Polarized Magneto-Electric Dipole Antenna Array with Wide AR and Impedance Bandwidth for Millimeter-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2250–2254. [Google Scholar] [CrossRef]
- Xu, J.; Hong, W.; Jiang, Z.H.; Zhang, H. Low-Cost Millimeter-Wave Circularly Polarized Planar Integrated Magneto-Electric Dipole and Its Arrays with Low-Profile Feeding Structures. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1400–1404. [Google Scholar] [CrossRef]
- Tran, H.-H.; Nguyen, T.T.-L.; Pham, T.D. Circularly Polarized MIMO Antenna Based on Microstrip Patch and Metasurface Structures. Electronics 2023, 12, 384. [Google Scholar] [CrossRef]
- Ji, Z.; Sun, G.; Wang, K.; Wong, H.; Yu, Z.; Li, Z.; Wei, C.; Liu, P. A Circularly Polarized Complementary Antenna with Substrate Integrated Coaxial Line Feed for X-Band Applications. Electronics 2024, 13, 785. [Google Scholar] [CrossRef]
- Hao, S.-S.; Chen, Q.-Q.; Li, J.-Y.; Xie, J. A High-Gain Circularly Polarized Slotted Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1022–1026. [Google Scholar] [CrossRef]
- Ray, M.K.; Mandal, K.; Nasimuddin, N. Low-Profile Circularly Polarized Patch Antenna with Wide 3 dB Beamwidth. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2473–2477. [Google Scholar] [CrossRef]
- Cheng, G.; Huang, B.; Huang, Z.; Yang, L. A High-Gain Circularly Polarized Filtering Stacked Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 995–999. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Liu, Q.H. A Wideband Circularly Polarized Filtering Antenna Based on Slot-Patch Structure. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1858–1862. [Google Scholar] [CrossRef]
- Lin, J.-F.; Chu, Q.-X. Enhancing Bandwidth of CP Microstrip Antenna by Using Parasitic Patches in Annular Sector Shapes to Control Electric Field Components. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 924–927. [Google Scholar] [CrossRef]
- Santosa, C.E.; Sumantyo, J.T.S.; Gao, S.; Ito, K. Broadband Circularly Polarized Microstrip Array Antenna with Curved-truncation and Circle-slotted Parasitic. IEEE Trans. Antennas Propag. 2021, 69, 5524–5533. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Z.; En, Y. Performance Enhancement of Broadband Circularly Polarized Slot–Microstrip Antenna Using Parasitic Elements. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2255–2259. [Google Scholar] [CrossRef]
- Ogurtsov, S.; Koziel, S. A Conformal Circularly Polarized Series-Fed Microstrip Antenna Array Design. IEEE Trans. Antennas Propag. 2020, 68, 873–881. [Google Scholar] [CrossRef]
- Yang, Y.H.; Sun, B.H.; Guo, J.L. A Low-cost, Single-layer, Dual circularly Polarized Antenna for Millimeter-wave Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 651–655. [Google Scholar] [CrossRef]
- Sadeghi-Marasht, S.; Sharawi, M.S.; Zhu, A. Dual-Band Circularly Polarized Antenna Array for 5G Millimeter-Wave Applications. IEEE Open J. Antennas Propag. 2022, 3, 314–323. [Google Scholar] [CrossRef]
- Park, S.-J.; Park, S.-O. LHCP and RHCP Substrate Integrated Waveguide Antenna Arrays for Millimeter-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 601–604. [Google Scholar] [CrossRef]
- Liao, H.; Shamim, A. A Low-Profile and High-Aperture-Efficiency Hexagonal Circularly Polarized Microstrip Antenna Array. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 615–619. [Google Scholar] [CrossRef]















| Parameters | Value | Parameters | Value |
|---|---|---|---|
| 3.44 | 3.8 | ||
| 1.35 | 0.84 | ||
| 1.8 | 0.69 | ||
| 0.18 | 0.59 | ||
| 0.3 | 0.87 | ||
| 0.24 | 2.2 |
| Antenna Type | Frequency (GHz) | BWIM (%) | BWAR (%) | Size (λ02) | Gain (dBi) | HPBW (°) | FBR (dB) | |
|---|---|---|---|---|---|---|---|---|
| [18] | Array (1 × 10) | 9.75 | 3 | 4 | 1.47 | 10 | 30 | 18 |
| [19] | Array (1 × 7) | 30.1 | >20 | 6.57 | 7.8 | 11.79 | 35 | 25.4 |
| [20] | Array (2 × 2) | 28 | 5.6 | 3.2 | 2.79 | 15.69 | 61 | – |
| [21] | Array (1 × 8) | 28.3 | 5.5 | 3.9 | 38.7 | 13.09 | 101.6 | – |
| [22] | Array (1 × 6) | 1.563 | 11 | 4.8 | 1.38 | 12.4 | 42 | 38.2 |
| This work | Array (2 × 2) | 17.2 | 14.4 | 6.52 | 1.07 | 8.64 | 66 | 20.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, G.; Lv, S.; Zhang, Y. A Ku-Band Circularly Polarized Array Antenna Based on Vertical Virtual Ground. Electronics 2025, 14, 4691. https://doi.org/10.3390/electronics14234691
Dong G, Lv S, Zhang Y. A Ku-Band Circularly Polarized Array Antenna Based on Vertical Virtual Ground. Electronics. 2025; 14(23):4691. https://doi.org/10.3390/electronics14234691
Chicago/Turabian StyleDong, Gaoya, Shibo Lv, and Yuxin Zhang. 2025. "A Ku-Band Circularly Polarized Array Antenna Based on Vertical Virtual Ground" Electronics 14, no. 23: 4691. https://doi.org/10.3390/electronics14234691
APA StyleDong, G., Lv, S., & Zhang, Y. (2025). A Ku-Band Circularly Polarized Array Antenna Based on Vertical Virtual Ground. Electronics, 14(23), 4691. https://doi.org/10.3390/electronics14234691

