Health Assessment of Electricity Meters Based on Deep Learning-Improved Survival Analysis Model
Abstract
1. Introduction
2. Data Preparing
2.1. Original Data
2.2. Data Processing
3. Survival Analysis Model
3.1. Traditional Cox Proportional Hazard Model
3.1.1. Cox Proportional Hazard Model
3.1.2. Construction and Maximization of Partial Likelihood Function
3.2. Transformer Cox Proportional Hazard Model
4. Experiment
4.1. Traditional Hazard Proportional Model
4.1.1. Data Preparation and Model Training Settings
4.1.2. Analysis of the Results of Significance Testing
4.1.3. Traditional CoxPH Model Verification
4.2. Trans CoxPH Model
4.2.1. Data Preparing and Model Training Settings
4.2.2. Trans CoxPH Model Verification
4.2.3. Control Experiment
4.2.4. Analysis of the Impact of Model Hyperparameters on Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grigoraș, G.; Raboaca, M.S.; Dumitrescu, C.; Manea, D.L.; Mihaltan, T.C.; Niculescu, V.-C.; Neagu, B.C. Contributions to power Grid system analysis based on clustering techniques. Sensors 2023, 23, 1895. [Google Scholar] [CrossRef]
- Li, W.; Yuan, R.; Guo, J.; Li, H.; Ye, X. Determination of key components and failure mechanism analysis of smart electricity meter. In Proceedings of the 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE), Harbin, China, 26–28 November 2021; IEEE: Washington, DC, USA, 2021; pp. 78–82. [Google Scholar]
- Altenburg, T.; Staegemann, D.; Volk, M.; Turowski, K. Reliability Estimation and Optimization of a Smart Meter Architecture Using a Monte Carlo Simulation. SN Comput. Sci. 2023, 4, 438. [Google Scholar] [CrossRef]
- Azmi, N.H.; Leh, N.A.M.; Kamaruzaman, N.A. Modeling of energy meter using MATLAB/Simulink. In Proceedings of the 2018 9th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 3–4 August 2018; IEEE: Washington, DC, USA, 2018; pp. 75–80. [Google Scholar]
- Diahovchenko, I.; Dolník, B.; Kanálik, M.; Kurimský, J. Contemporary electric energy meters testing under simulated nonsinusoidal field conditions. Electr. Eng. 2022, 104, 1077–1092. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Z.; Yue, Y. Analysis and prospect of the application of wireless sensor networks in ubiquitous power internet of things. Comput. Intell. Neurosci. 2022, 2022, 9004942. [Google Scholar] [CrossRef]
- Sheng, Q.; Huang, L.; Wang, X.; Jiang, J.; Li, P.; Zhang, J.; Qu, S. Research and analysis on evaluation methods of electrical performance of Smart Energy Meters. J. Phys. Conf. Ser. 2021, 1802, 032135. [Google Scholar] [CrossRef]
- Priya, B.G. Whispers of the Grid: Unraveling the Mysteries of Automated Energy Billing, Fault Detection, and Raspberry Pi’s Power Unplug System. In Proceedings of the 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 20–22 September 2023; IEEE: Washington, DC, USA, 2023; pp. 95–100. [Google Scholar]
- Labib, L.; Billah, M.; Sultan Mahmud Rana, G.; Sadat, M.N.; Kibria, M.G.; Islam, M.R. Design and implementation of low-cost universal smart energy meter with demand side load management. IET Gener. Transm. Distrib. 2017, 11, 3938–3945. [Google Scholar] [CrossRef]
- Nainar, K.; Iov, F. Smart meter measurement-based state estimation for monitoring of low-voltage distribution grids. Energies 2020, 13, 5367. [Google Scholar] [CrossRef]
- Sharma, K.; Saini, L.M. Performance analysis of smart metering for smart grid: An overview. Renew. Sustain. Energy Rev. 2015, 49, 720–735. [Google Scholar] [CrossRef]
- Chen, X.; Li, T.; Cao, F.; Chu, P.; Zhao, X.; Huang, R.; Liu, L.; Zhang, C. A Method of Evaluating Operation of Electric Energy Meter. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 042030. [Google Scholar] [CrossRef]
- Hughes, W.; Zhang, W.; Cerrai, D.; Bagtzoglou, A.; Wanik, D.; Anagnostou, E. A hybrid physics-based and data-driven model for power distribution system infrastructure hardening and outage simulation. Reliab. Eng. Syst. Saf. 2022, 225, 108628. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Si, Y.; Zhu, Y.; Zhu, T.; Yin, S.; Liu, B. FDIA localization and classification detection in smart grids using multi-modal data and deep learning technique. Comput. Electr. Eng. 2024, 119, 109572. [Google Scholar] [CrossRef]
- Fekri, M.N.; Grolinger, K.; Mir, S. Distributed load forecasting using smart meter data: Federated learning with Recurrent Neural Networks. Int. J. Electr. Power Energy Syst. 2022, 137, 107669. [Google Scholar] [CrossRef]
- Ahmad, T.; Madonski, R.; Zhang, D.; Huang, C.; Mujeeb, A. Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renew. Sustain. Energy Rev. 2022, 160, 112128. [Google Scholar] [CrossRef]
- Koshy, S.; Rahul, S.; Sunitha, R.; Cheriyan, E.P. Smart grid–based big data analytics using machine learning and artificial intelligence: A survey. In Artificial Intelligence and Internet of Things for Renewable Energy Systems; Woodhead Publishing: Cambridge, England, 2021; Volume 12, p. 241. [Google Scholar]
- Duan, J.; Tang, Q.; Ma, J.; Yao, W. Operational status evaluation of smart electricity meters using Gaussian process regression with optimized-ARD kernel. IEEE Trans. Ind. Inform. 2023, 20, 1272–1282. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Y.; Liu, J.; Cheng, Y.; Tang, C.; Yao, C. Evaluation of operating state for smart electricity meters based on transformer–encoder–BiLSTM. IEEE Trans. Ind. Inform. 2022, 19, 2409–2420. [Google Scholar] [CrossRef]
- Zhao, Q.; Mu, J.; Han, X.; Liang, D.; Wang, X. Evaluation model of operation state based on deep learning for smart meter. Energies 2021, 14, 4674. [Google Scholar] [CrossRef]
- Cai, H.; Chen, H.; Ye, X.; Zhang, X.; Wen, H.; Li, J.; Guo, Q. An on-line state evaluation method of smart meters based on information fusion. IEEE Access 2019, 7, 163665–163676. [Google Scholar] [CrossRef]
- Liua, M.; Liuc, D.; Sunc, G.; Zhaoc, Y.; Wangc, D.; Liue, F.; Fangd, X.; Hee, Q.; Xuc, D. Detection of malfunctional smart electricity meters based on deep learning of electricity usage data. arXiv 2019, arXiv:1907.11377. [Google Scholar]
- Liu, M.; Liu, D.; Sun, G.; Zhao, Y.; Wang, D.; Liu, F.; Fang, X.; He, Q.; Xu, D. Deep learning detection of inaccurate smart electricity meters: A case study. IEEE Ind. Electron. Mag. 2020, 14, 79–90. [Google Scholar] [CrossRef]
- Chen, M.; Gu, X.; Wang, Y.; Ma, Y.; Li, J.; Liu, S.; Ye, X.; Lin, Z.; Yang, L. Evaluation and Replacement of Smart Meters. In Proceedings of the 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 23–26 November 2020; IEEE: Washington, DC, USA, 2020; pp. 1005–1010. [Google Scholar]
- Yang, S.; Meng, D.; Wang, H.; Yang, C. A novel learning function for adaptive surrogate-model-based reliability evaluation. Philos. Trans. R. Soc. A 2024, 382, 20220395. [Google Scholar] [CrossRef]
- Tripathi, S.; Muhr, D.; Brunner, M.; Jodlbauer, H.; Dehmer, M.; Emmert-Streib, F. Ensuring the robustness and reliability of data-driven knowledge discovery models in production and manufacturing. Front. Artif. Intell. 2021, 4, 576892. [Google Scholar] [CrossRef] [PubMed]
- Flynn, R. Survival analysis. J. Clin. Nurs. 2012, 21 Pt 20, 2789–2797. [Google Scholar] [CrossRef]
- Harrell, J.; Frank, E.; Harrell, F.E. Cox proportional hazards regression model. In Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2015; pp. 475–519. [Google Scholar]
- Mahmud, M. Impact of Data-Dependent Model Selection on Inference. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2000. [Google Scholar]
- Shi, D.; Zhao, J.; Wang, Z.; Zhao, H.; Wang, J.; Lian, Y.; Burke, A.F. Spatial-temporal self-attention transformer networks for battery state of charge estimation. Electronics 2023, 12, 2598. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Du, J.; Yang, Z.; Dong, X. CLformer: Locally grouped auto-correlation and convolutional transformer for long-term multivariate time series forecasting. Eng. Appl. Artif. Intell. 2023, 121, 106042. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
Voltage specification | 3 × 100 V (three-phase three-wire system) or 3 × 220/380 V (three-phase four-wire system), with an allowable deviation of ±20% |
Current specifications | 1.5 (6) A, 10 (60) A, 20 (80) A, etc., are available for selection |
Measurement accuracy grade | 1S grade (±1%) |
Power consumption | ≤5 W (≤10 VA) |
Collection interval | It can be set from 5 min to 1 month, with a minimum interval of 5 min, and it must be a multiple of 5 min |
Clock error | The Hitachi clock error is ±1 s per day, and the satellite synchronization time error is ±0.1 s |
Time | Phase A Voltage (V) | Phase B Voltage (V) | Phase C Voltage (V) | Phase A Current (A) | Phase B Current (A) | Phase C Current (A) |
---|---|---|---|---|---|---|
1 June 2023 00:00:00 | 251.1 | 222.0 | 244.2 | 16.873 | 19.864 | 1.353 |
1 June 2023 01:00:00 | 252.4 | 223.5 | 245.2 | 16.807 | 19.784 | 1.371 |
1 June 2023 02:00:00 | 251.9 | 224.0 | 245.5 | 16.814 | 19.194 | 1.371 |
Time | Phase A Power (KW) | Phase B Power (KW) | Phase C Power (KW) | Total Power (KW) | Power Factor | |
1 June 2023 00:00:00 | 3.8811 | 4.1770 | 0.2954 | 8.3522 | 0.977 | |
1 June 2023 01:00:00 | 3.8819 | 4.1865 | 0.2952 | 8.3630 | 0.977 | |
1 June 2023 02:00:00 | 3.8741 | 4.0582 | 0.2957 | 8.2293 | 0.976 |
Work Order Number | Fault Description | Time |
---|---|---|
ZD0609002023061170599 | Abnormal clock of electricity meter | 11 June 2023 |
ZD0609002023060170990 | Voltage out of phase | 1 June 2023 |
ZD0609002023061170582 | The bus power is unbalanced | 11 June 2023 |
Time | Power Factor | DT | |||
---|---|---|---|---|---|
1 June 2023 | 0.9600 | 243.7667 | −0.2113 | −0.0026 | 0.0003 |
2 June 2023 | 0.9430 | 243.7667 | 0.0124 | 0.0000 | 0.0520 |
3 June 2023 | 0.9590 | 246.3667 | −0.5064 | 0.0458 | 0.0230 |
Time | Average Voltage (V) | Combined Current (A) | Duration (Day) | Fault or Not (0: Normal, 1: Failure) | |
1 June 2023 | −0.3661 | 241.3667 | 0.5150 | 4913 | 0 |
2 June 2023 | −0.2989 | 237.5000 | 0.5120 | 4914 | 0 |
3 June 2023 | −0.3525 | 237.0333 | 0.3570 | 4915 | 0 |
Concomitant Variable | Coef | w | p |
---|---|---|---|
Power factor | −0.96 | −24.95 | <0.005 |
Voltage fluctuation | 2.25 | 14.02 | <0.005 |
Current fluctuation | −0.85 | −0.36 | 0.72 |
Reverse polarity of current | 2.98 | 2.63 | 0.01 |
Electrical differential rate | 2.37 | 2.07 | 0.04 |
Operating error | −2.35 | −1.52 | 0.13 |
Voltage mean value | −0.59 | −22.04 | <0.005 |
Current sum | 4.60 | 11.21 | <0.005 |
Sample Code | Power Factor | VF | IF | ||
---|---|---|---|---|---|
18846 | 0.9900 | 0.0015 | 13.9736 | 0.0000 | |
7598 | 0.4570 | 0.0012 | 1.5812 | 0.3703 | |
39949 | 0.8660 | 0.0001 | 0.2910 | 0.0035 | |
4265 | 0.4130 | −0.0058 | −0.4976 | 0.0000 | |
3335 | 1.0000 | 0.0084 | −0.7266 | 0.0020 | |
171933 | 0.9910 | 0.0073 | −0.3572 | 0.0000 | |
68593 | 1.0000 | 0.0214 | −0.3543 | 0.0006 | |
76521 | 0.7520 | 0.0045 | −0.8506 | 0.0070 | |
149187 | 0.9900 | 0.0125 | −0.9480 | 0.0015 | |
42236 | 0.3070 | −0.0102 | −1.0241 | 0.0000 | |
Sample Code | DT | Average Voltage (V) | Combined Current (A) | Fault or No Fault (0: Normal; 1: Failure) | |
18846 | 0.0001 | −0.1223 | 108.9500 | 6300.0000 | 1 |
7598 | −0.0024 | −0.2445 | 102.9000 | 30.4000 | 0 |
39949 | −0.0013 | −0.1744 | 104.8500 | 379.0000 | 0 |
4265 | −0.0007 | 13.8315 | 99.2500 | 0.5000 | 0 |
3335 | 0.0119 | −0.3218 | 103.8500 | 42.6000 | 0 |
171933 | 0.0000 | 0.0041 | 237.1666 | 31.1980 | 1 |
68593 | 0.0001 | −0.0077 | 213.6333 | 8.1780 | 0 |
76521 | 0.0087 | −0.2675 | 236.6000 | 4.4000 | 0 |
149187 | −0.0026 | −0.0044 | 241.8666 | 21.8400 | 0 |
42236 | −0.0033 | −10.8448 | 100.5000 | 4.0000 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Ye, W.; Wu, J.; Xiao, R.; Xin, M. Health Assessment of Electricity Meters Based on Deep Learning-Improved Survival Analysis Model. Electronics 2025, 14, 3706. https://doi.org/10.3390/electronics14183706
Yang J, Ye W, Wu J, Xiao R, Xin M. Health Assessment of Electricity Meters Based on Deep Learning-Improved Survival Analysis Model. Electronics. 2025; 14(18):3706. https://doi.org/10.3390/electronics14183706
Chicago/Turabian StyleYang, Jing, Wenbo Ye, Jianchuan Wu, Renxin Xiao, and Minyong Xin. 2025. "Health Assessment of Electricity Meters Based on Deep Learning-Improved Survival Analysis Model" Electronics 14, no. 18: 3706. https://doi.org/10.3390/electronics14183706
APA StyleYang, J., Ye, W., Wu, J., Xiao, R., & Xin, M. (2025). Health Assessment of Electricity Meters Based on Deep Learning-Improved Survival Analysis Model. Electronics, 14(18), 3706. https://doi.org/10.3390/electronics14183706