Source-Free Domain Adaptation for Medical Image Segmentation via Mutual Information Maximization and Prediction Bank
Abstract
1. Introduction
- First, we introduce a novel mutual information maximization approach that fundamentally addresses pseudo-label noise by formulating an optimization problem from information theory principles rather than relying on post-processing techniques.
- Second, we develop a comprehensive prediction bank mechanism that effectively tackles the class imbalance problem in medical images by analyzing dataset-wide statistics and dynamically adjusting the loss function weights.
- Third, we present an enhanced teacher–student framework that seamlessly integrates these aforementioned two components, enabling stable and effective source-free domain adaptation for medical image segmentation without requiring access to source domain data during training.
2. Related Work
2.1. Domain Adaptation
2.2. Source-Free Domain Adaptation (SFDA)
3. Methdology
3.1. Framework of MIMPB
Algorithm 1 Training procedure of MIMPB |
|
3.2. Teacher–Student Network
3.3. Mutual Information Optimization Algorithm
3.4. Prediction Bank
3.5. Objective Function
4. Experiments
4.1. Experiment Settings
4.2. Comparison with Other Methods
4.3. Ablation Study Results
4.4. Parameter Analysis
4.5. Visualization
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, W.; Bai, J.; Liao, W.; Chen, Y.; Liu, M.; Xie, Y. From cnn to transformer: A review of medical image segmentation models. J. Imaging Inform. Med. 2024, 37, 1529–1547. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wu, Z.; Zheng, H.; Huang, L.; Ding, W.; Pan, L.; Yin, L. Cross-modality medical image segmentation via enhanced feature alignment and cross pseudo supervision learning. Diagnostics 2024, 14, 1751. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Sheng, B.; Fang, R.; Li, H.; Dai, L.; Stolte, S.; Qin, J.; Jia, W.; Shen, D. Domain-invariant interpretable fundus image quality assessment. Med. Image Anal. 2020, 61, 101654. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Xi, N.; Yuan, J.; Zhou, Z.; Dang, K.; Ding, X. Source-free domain adaptation for medical image segmentation via prototype-anchored feature alignment and contrastive learning. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 3–12. [Google Scholar]
- Shen, W.; Wang, Q.; Jiang, H.; Li, S.; Yin, J. Unsupervised Domain Adaptation for Semantic Segmentation via Self-Supervision. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 12–16 July 2021; pp. 2747–2750. [Google Scholar]
- Xu, Z.; Lu, D.; Wang, Y.; Luo, J.; Wei, D.; Zheng, Y.; Tong, R.K.y. Denoising for relaxing: Unsupervised domain adaptive fundus image segmentation without source data. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 214–224. [Google Scholar]
- Ghafoorian, M.; Mehrtash, A.; Kapur, T.; Karssemeijer, N.; Marchiori, E.; Pesteie, M.; Guttmann, C.R.G.; de Leeuw, F.E.; Tempany, C.M.; van Ginneken, B.; et al. Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI 2017, Quebec, QC, Canada, 10–14 September 2017; pp. 516–524. [Google Scholar]
- Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med. Imaging Graphs 2019, 75, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Samala, R.K.; Chan, H.P.; Hadjiiski, L.; Helvie, M.A.; Richter, C.; Cha, K. Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. In Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, Houston, TX, USA, 12–15 February 2018; pp. 172–178. [Google Scholar]
- Gu, Y.; Ge, Z.; Bonnington, C.P.; Zhou, J. Progressive Transfer Learning and Adversarial Domain Adaptation for Cross-Domain Skin Disease Classification. IEEE J. Biomed. Health Inform. 2020, 24, 1379–1393. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xing, F.; Shusharina, N.; Lim, R.; Jay Kuo, C.C.; El Fakhri, G.; Woo, J. Act: Semi-supervised domain-adaptive medical image segmentation with asymmetric co-training. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 66–76. [Google Scholar]
- Ma, Q.; Zhang, J.; Qi, L.; Yu, Q.; Shi, Y.; Gao, Y. Constructing and exploring intermediate domains in mixed domain semi-supervised medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 11642–11651. [Google Scholar]
- Kamnitsas, K.; Baumgartner, C.; Ledig, C.; Newcombe, V.; Simpson, J.; Kane, A.; Menon, D.; Nori, A.; Criminisi, A.; Rueckert, D.; et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 597–609. [Google Scholar]
- Wang, S.; Yu, L.; Yang, X.; Fu, C.W.; Heng, P.A. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2485–2495. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Ouyang, C.; Chen, C.; Chen, H.; Glocker, B.; Zhuang, X.; Heng, P.A. Pnp-adanet: Plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 2019, 7, 99065–99076. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, J.; Fu, H.; Gu, Z.; Xiao, Y.; Zhou, K.; Gao, S.; Zheng, R.; Liu, J. Noise Adaptation Generative Adversarial Network for Medical Image Analysis. IEEE Trans. Med. Imaging 2020, 39, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Chung, A.C. Diffusion-based domain adaptation for medical image segmentation using stochastic step alignment. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024; pp. 188–198. [Google Scholar]
- Zhang, X.; Wu, Y.; Angelini, E.; Li, A.; Guo, J.; Rasmussen, J.M.; O’Connor, T.G.; Wadhwa, P.D.; Jackowski, A.P.; Li, H.; et al. MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024. [Google Scholar]
- Kim, Y.; Cho, D.; Han, K.; Panda, P.; Hong, S. Domain Adaptation Without Source Data. IEEE Trans. Artif. Intell. 2021, 2, 508–518. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Xie, D.; Yang, S.; Yuan, P.; Pu, S.; Zhuang, Y. A free lunch for unsupervised domain adaptive object detection without source data. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 8474–8481. [Google Scholar]
- Vu, T.H.; Jain, H.; Bucher, M.; Cord, M.; Pérez, P. ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2512–2521. [Google Scholar]
- Hou, Y.; Zheng, L. Source free domain adaptation with image translation. arXiv 2020, arXiv:2008.07514. [Google Scholar]
- Li, R.; Jiao, Q.; Cao, W.; Wong, H.S.; Wu, S. Model Adaptation: Unsupervised Domain Adaptation Without Source Data. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 9638–9647. [Google Scholar]
- Iqbal, J.; Ali, M. Mlsl: Multi-level self-supervised learning for domain adaptation with spatially independent and semantically consistent labeling. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1864–1873. [Google Scholar]
- Li, G.; Kang, G.; Liu, W.; Wei, Y.; Yang, Y. Content-consistent matching for domain adaptive semantic segmentation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 440–456. [Google Scholar]
- Bateson, M.; Kervadec, H.; Dolz, J.; Lombaert, H.; Ayed, I.B. Source-free domain adaptation for image segmentation. Med. Image Anal. 2022, 82, 102617. [Google Scholar] [PubMed]
- VS, V.; Valanarasu, J.M.J.; Patel, V.M. Target and task specific source-free domain adaptive image segmentation. arXiv 2022, arXiv:2203.15792. [Google Scholar]
- Yang, C.; Guo, X.; Chen, Z.; Yuan, Y. Source free domain adaptation for medical image segmentation with fourier style mining. Med. Image Anal. 2022, 79, 102457. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Choi, S.; Kim, H.; Chung, S.Y. Unsupervised Visual Representation Learning via Mutual Information Regularized Assignment. arXiv 2022, arXiv:2211.02284. [Google Scholar] [CrossRef]
- Orlando, J.I.; Fu, H.; Breda, J.B.; Van Keer, K.; Bathula, D.R.; Diaz-Pinto, A.; Fang, R.; Heng, P.A.; Kim, J.; Lee, J.; et al. Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 2020, 59, 101570. [Google Scholar] [CrossRef] [PubMed]
- Fumero, F.; Alayon, S.; Sanchez, J.L.; Sigut, J.; Gonzalez-Hernandez, M. RIM-ONE: An open retinal image database for optic nerve evaluation. In Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, 27–30 June 2011; pp. 1–6. [Google Scholar]
- Sivaswamy, J.; Krishnadas, S.; Chakravarty, A.; Joshi, G.; Ujjwal. A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Pap. 2015, 2, 1004. [Google Scholar]
- Wang, S.; Yu, L.; Li, K.; Yang, X.; Fu, C.W.; Heng, P.A. Boundary and Entropy-driven Adversarial Learning for Fundus Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019. [Google Scholar]
- Bateson, M.; Kervadec, H.; Dolz, J.; Lombaert, H.; Ayed, I.B. Source-Relaxed Domain Adaptation for Image Segmentation. arXiv 2020, arXiv:2005.03697v1. [Google Scholar]
- Karani, N.; Erdil, E.; Chaitanya, K.; Konukoglu, E. Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 2021, 68, 101907. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Q.; Jin, Y.; Dou, Q.; Heng, P.A. Source-Free Domain Adaptive Fundus Image Segmentation with Denoised Pseudo-Labeling. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021. [Google Scholar]
- Tang, L.; Li, K.; He, C.; Zhang, Y.; Li, X. Source-Free Domain Adaptive Fundus Image Segmentation with Class-Balanced Mean Teacher. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2023, Vancouver, BC, Canada, 8–12 October 2023; Springer: Cham, Switzerland, 2023; pp. 684–694. [Google Scholar]
- Luo, X.; Chen, W.; Liang, Z.; Yang, L.; Wang, S.; Li, C. Crots: Cross-Domain Teacher–Student Learning for Source-Free Domain Adaptive Semantic Segmentation. Int. J. Comput. Vis. 2024, 132, 20–39. [Google Scholar] [CrossRef]
- Huai, Z.; Ding, X.; Li, Y.; Li, X. Context-aware pseudo-label refinement for source-free domain adaptive fundus image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2023; Springer: Cham, Switzerland, 2023; pp. 618–628. [Google Scholar]
- Li, L.; Zhou, Y.; Yang, G. Robust source-free domain adaptation for fundus image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 1–10 January 2024; pp. 7840–7849. [Google Scholar]
Method | S-F | Optic Disc | Optic Cup | Average | |||
---|---|---|---|---|---|---|---|
Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | ||
RIM-ONE-r Dataset | |||||||
W/o DA | 83.18 ± 6.46 | 24.15 ± 15.58 | 74.51 ± 16.40 | 14.44 ± 11.27 | 78.85 ± 1.43 | 19.47 ± 13.43 | |
Oracle | 96.80 | - | 85.60 | - | 91.20 | - | |
BEAL | × | 89.80 | - | 81.00 | - | 85.40 | - |
AdvEnt | × | 89.73 ± 3.66 | 9.84 ± 3.86 | 77.99 ± 21.08 | 7.57 ± 4.24 | 83.86 ± 12.37 | 8.71 ± 4.05 |
SRDA | ✓ | 89.37 ± 2.70 | 9.91 ± 2.45 | 77.61 ± 13.58 | 10.15 ± 5.75 | 83.49 ± 6.93 | 10.03 ± 4.10 |
DAE | ✓ | 89.08 ± 3.32 | 11.63 ± 6.84 | 79.01 ± 12.82 | 10.31 ± 8.45 | 84.05 ± 8.07 | 10.97 ± 7.65 |
DPL | ✓ | 90.13 ± 3.06 | 9.43 ± 3.46 | 79.78 ± 11.05 | 9.01 ± 5.59 | 84.85 ± 7.06 | 9.22 ± 4.53 |
CBMT | ✓ | 93.36 ± 4.07 | 6.20 ± 4.79 | 81.16 ± 14.71 | 8.37 ± 6.99 | 87.26 ± 9.39 | 7.29 ± 5.89 |
Crots | ✓ | 92.93 ± 3.61 | 6.36 ± 3.38 | 80.19 ± 2.13 | 6.84 ± 4.57 | 86.56 ± 2.87 | 6.60 ± 3.98 |
CPR | ✓ | 91.72 ± 7.37 | 6.80 ± 5.19 | 78.56 ± 2.03 | 7.65 ± 5.33 | 85.14 ± 4.70 | 7.22 ± 5.26 |
RDPL | ✓ | 91.70 ± 3.88 | 7.62 ± 3.84 | 78.55 ± 2.20 | 7.48 ± 4.42 | 85.13 ± 3.04 | 7.55 ± 4.13 |
OURS | ✓ | 93.73 ± 2.87 | 5.53 ± 2.41 | 81.86 ± 10.10 | 7.91 ± 3.78 | 87.80 ± 6.49 | 6.72 ± 3.10 |
Method | S-F | Optic Disc | Optic Cup | Average | |||
---|---|---|---|---|---|---|---|
Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | ||
Drishti-GS Dataset | |||||||
W/o DA | 93.84 ± 2.91 | 9.05 ± 7.50 | 83.36 ± 11.95 | 11.39 ± 6.30 | 86.60 ± 7.43 | 10.22 ± 6.90 | |
Oracle | 97.40 | - | 90.10 | - | 93.75 | - | |
BEAL [34] | × | 96.10 | - | 86.20 | - | 91.15 | - |
AdvEnt [22] | × | 96.16 ± 1.65 | 4.36 ± 1.83 | 82.75 ± 11.08 | 11.36 ± 7.22 | 89.46 ± 6.37 | 7.86 ± 4.53 |
SRDA [35] | ✓ | 96.22 ± 1.30 | 4.88 ± 3.47 | 80.67 ± 11.78 | 13.12 ± 6.48 | 88.45 ± 6.54 | 9.00 ± 4.98 |
DAE [36] | ✓ | 94.04 ± 2.85 | 8.79 ± 7.45 | 83.11 ± 11.89 | 11.56 ± 6.32 | 88.58 ± 7.37 | 10.18 ± 6.89 |
DPL [37] | ✓ | 96.39 ± 1.33 | 4.08 ± 1.49 | 83.53 ± 17.80 | 11.39 ± 10.18 | 89.96 ± 9.57 | 7.74 ± 5.84 |
CBMT [38] | ✓ | 96.61 ± 1.45 | 3.85 ± 1.63 | 84.33 ± 11.70 | 10.30 ± 5.88 | 90.47 ± 6.58 | 7.08 ± 3.76 |
Crots [39] | ✓ | 96.58 ± 1.78 | 3.90 ± 2.18 | 83.18 ± 11.36 | 11.22 ± 6.79 | 89.88 ± 6.57 | 7.56 ± 4.49 |
CPR [40] | ✓ | 90.12 ± 2.42 | 10.63 ± 2.10 | 75.04 ± 12.98 | 16.69 ± 9.09 | 82.58 ± 7.70 | 13.66 ± 5.59 |
RDPL [41] | ✓ | 96.64 ± 1.49 | 3.78 ± 1.61 | 84.33 ± 12.17 | 10.30 ± 5.98 | 90.49 ± 6.83 | 7.04 ± 3.80 |
OURS | ✓ | 96.51 ± 1.18 | 3.90 ± 1.29 | 86.97 ± 11.88 | 8.62 ± 5.32 | 91.74 ± 6.53 | 6.26 ± 3.31 |
MIM Module | PB Module | Optic Disc | Optic Cup | Average | |||
---|---|---|---|---|---|---|---|
Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | ||
RIM-ONE-r Dataset | |||||||
✓ | 93.04 ± 3.13 | 6.02 ± 2.41 | 80.45 ± 14.64 | 7.70 ± 3.96 | 86.75 ± 8.89 | 6.87 ± 3.19 | |
✓ | 92.98 ± 3.19 | 6.20 ± 2.69 | 75.20 ± 21.63 | 8.92 ± 5.88 | 84.09 ± 12.41 | 7.56 ± 4.29 | |
✓ | ✓ | 93.73 ± 2.87 | 5.53 ± 2.41 | 81.86 ± 10.10 | 7.91 ± 3.78 | 87.80 ± 6.49 | 6.72 ± 3.10 |
Drishti-GS Dataset | |||||||
✓ | 86.89 ± 3.73 | 13.96 ± 2.34 | 77.73 ± 10.75 | 12.62 ± 6.11 | 82.31 ± 7.24 | 14.29 ± 4.23 | |
✓ | 89.16 ± 2.43 | 11.63 ± 2.17 | 67.62 ± 9.51 | 21.14 ± 7.71 | 78.39 ± 5.97 | 16.39 ± 4.94 | |
✓ | ✓ | 96.51 ± 1.18 | 3.90 ± 1.29 | 86.97 ± 11.88 | 8.62 ± 5.32 | 91.74 ± 6.53 | 6.26 ± 3.31 |
Augmentation | Optic Disc | Optic Cup | Average | |||
---|---|---|---|---|---|---|
Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | |
Drishti-GS Dataset | ||||||
Weak Augmentation | 93.36 ± 1.46 | 7.65 ± 1.71 | 83.01 ± 11.82 | 11.20 ± 5.32 | 88.19 ± 6.64 | 9.42 ± 7.03 |
Strong Augmentation | 92.95 ± 1.54 | 8.15 ± 1.79 | 84.88 ± 12.02 | 9.93 ± 5.22 | 88.92 ± 6.78 | 9.04 ± 3.51 |
Ours | 96.51 ± 1.18 | 3.90 ± 1.29 | 86.97 ± 11.88 | 8.62 ± 5.32 | 91.74 ± 6.53 | 6.26 ± 3.31 |
Update Coefficient | Optic Disc | Optic Cup | Average | |||
---|---|---|---|---|---|---|
Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | Dice [%] ↑ | ASD [Pixel] ↓ | |
Drishti-GS Dataset | ||||||
0.9 | 95.34 ± 1.55 | 5.23 ± 1.62 | 85.29 ± 11.95 | 9.79 ± 5.19 | 90.31 ± 6.75 | 7.51 ± 3.41 |
0.95 | 93.36 ± 1.70 | 7.75 ± 1.71 | 85.53 ± 11.70 | 9.50 ± 4.81 | 89.44 ± 6.70 | 8.50 ± 4.21 |
0.96 | 95.07 ± 1.43 | 5.58 ± 1.54 | 85.77 ± 13.51 | 9.42 ± 6.14 | 90.42 ± 7.47 | 7.48 ± 4.51 |
0.97 | 96.19 ± 1.51 | 4.28 ± 1.66 | 85.54 ± 13.77 | 9.59 ± 6.34 | 90.86 ± 7.64 | 6.94 ± 4.65 |
0.98 | 94.55 ± 1.64 | 6.26 ± 1.98 | 85.77 ± 13.95 | 9.39 ± 6.49 | 90.16 ± 7.80 | 7.82 ± 5.89 |
0.99 | 96.51 ± 1.18 | 3.90 ± 1.29 | 86.97 ± 11.88 | 8.62 ± 5.32 | 91.74 ± 6.53 | 6.26 ± 3.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhou, Y.; Li, X. Source-Free Domain Adaptation for Medical Image Segmentation via Mutual Information Maximization and Prediction Bank. Electronics 2025, 14, 3656. https://doi.org/10.3390/electronics14183656
Wu H, Zhou Y, Li X. Source-Free Domain Adaptation for Medical Image Segmentation via Mutual Information Maximization and Prediction Bank. Electronics. 2025; 14(18):3656. https://doi.org/10.3390/electronics14183656
Chicago/Turabian StyleWu, Hongzhen, Yue Zhou, and Xiaoqiang Li. 2025. "Source-Free Domain Adaptation for Medical Image Segmentation via Mutual Information Maximization and Prediction Bank" Electronics 14, no. 18: 3656. https://doi.org/10.3390/electronics14183656
APA StyleWu, H., Zhou, Y., & Li, X. (2025). Source-Free Domain Adaptation for Medical Image Segmentation via Mutual Information Maximization and Prediction Bank. Electronics, 14(18), 3656. https://doi.org/10.3390/electronics14183656