High-Speed 1024-Pixel CMOS Electrochemical Imaging Sensor with 40,000 Frames per Second for Dopamine and Hydrogen Peroxide Imaging
Abstract
1. Introduction
2. Materials and Methods
2.1. CMOS Electrochemical Detector Design
2.2. Post-CMOS Processing
2.3. Biocompatible Packaging
2.4. Design of FPGA-Based Data Acquisition System
2.5. FPGA Architecture
2.6. Experimental Procedure for Electrochemical Imaging
3. Results and Discussion
3.1. Noise Characteristics and Performance
3.2. Fast Frame Rate Dopamine Electrochemical Imaging
3.3. Dynamic Hydrogen Peroxide Imaging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rothe, J.; Frey, O.; Stettler, A.; Chen, Y.; Hierlemann, A. Fully Integrated CMOS Microsystem for Electrochemical Measurements on 32 × 32 Working Electrodes at 90 Frames Per Second. Anal. Chem. 2014, 86, 6425–6432. [Google Scholar] [CrossRef] [PubMed]
- White, K.A.; Mulberry, G.; Kim, B.N. Rapid 1024-Pixel Electrochemical Imaging at 10,000 Frames Per Second Using Monolithic CMOS Sensor and Multifunctional Data Acquisition System. IEEE Sens. J. 2018, 18, 5507–5514. [Google Scholar] [CrossRef]
- Elliott, J.; Simoska, O.; Karasik, S.; Shear, J.B.; Stevenson, K.J. Transparent Carbon Ultramicroelectrode Arrays for the Electrochemical Detection of a Bacterial Warfare Toxin, Pyocyanin. Anal. Chem. 2017, 89, 6285–6289. [Google Scholar] [CrossRef] [PubMed]
- Simoska, O.; Sans, M.; Fitzpatrick, M.D.; Crittenden, C.M.; Eberlin, L.S.; Shear, J.B.; Stevenson, K.J. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays. ACS Sens. 2019, 4, 170–179. [Google Scholar] [CrossRef]
- Kasai, N.; Shimada, A.; Nyberg, T.; Torimitsu, K. An electrochemical sensor array and its application to real-time brain slice imaging. Electron. Commun. Jpn. 2009, 92, 1–6. [Google Scholar] [CrossRef]
- White, K.A.; Darroudi, M.; Park, J.; Kim, B.N. A 128-ch Area-Efficient Neurochemical-Sensing Front-End for FSCV Recordings of Dopamine. IEEE Sens. J. 2024, 24, 8788–8797. [Google Scholar] [CrossRef]
- Dragas, J.; Viswam, V.; Shadmani, A.; Chen, Y.; Bounik, R.; Stettler, A.; Radivojevic, M.; Geissler, S.; Obien, M.E.J.; Müller, J.; et al. In Vitro Multi-Functional Microelectrode Array Featuring 59 760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement, and Neurotransmitter Detection Channels. IEEE J. Solid-State Circuits 2017, 52, 1576–1590. [Google Scholar] [CrossRef]
- Viswam, V.; Dragas, J.; Shadmani, A.; Chen, Y.; Stettler, A.; Müller, J.; Hierlemann, A. 22.8 Multi-functional microelectrode array system featuring 59,760 electrodes, 2048 electrophysiology channels, impedance and neurotransmitter measurement units. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 394–396. [Google Scholar]
- Guo, J.; Ng, W.; Yuan, J.; Li, S.; Chan, M. A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 567–578. [Google Scholar] [CrossRef]
- Huang, M.; Delacruz, J.B.; Ruelas, J.C.; Rathore, S.S.; Lindau, M. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements. Pflügers Arch. Eur. J. Physiol. 2018, 470, 113–123. [Google Scholar] [CrossRef]
- Kim, B.N.; Herbst, A.D.; Kim, S.J.; Minch, B.A.; Lindau, M. Parallel recording of neurotransmitters release from chromaffin cells using a 10×10 CMOS IC potentiostat array with on-chip working electrodes. Biosens. Bioelectron. 2013, 41, 736–744. [Google Scholar] [CrossRef]
- Abbott, J.; Mukherjee, A.; Wu, W.; Ye, T.; Jung, H.S.; Cheung, K.M.; Gertner, R.S.; Basan, M.; Ham, D.; Park, H. Multi-parametric functional imaging of cell cultures and tissues with a CMOS microelectrode array. Lab Chip 2022, 22, 1286–1296. [Google Scholar] [CrossRef]
- Hu, K.; Ho, J.; Rosenstein, J.K. Super-Resolution Electrochemical Impedance Imaging With a 512 × 256 CMOS Sensor Array. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 502–510. [Google Scholar] [CrossRef]
- Rosenstein, J.K.; Wanunu, M.; Merchant, C.A.; Drndic, M.; Shepard, K.L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 2012, 9, 487–492. [Google Scholar] [CrossRef]
- Shekar, S.; Niedzwiecki, D.J.; Chien, C.-C.; Ong, P.; Fleischer, D.A.; Lin, J.; Rosenstein, J.K.; Drndić, M.; Shepard, K.L. Measurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution. Nano Lett. 2016, 16, 4483–4489. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, J.; Bowlby, M.; Peri, R.; Vasilyev, D.; Arias, R. High-throughput electrophysiology: An emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 2008, 7, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Aziz, M.K.; Li, S.; Chi, T.; Grijalva, S.I.; Sung, J.H.; Cho, H.C.; Wang, H. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 80–94. [Google Scholar] [CrossRef]
- Borton, D.A.; Yin, M.; Aceros, J.; Nurmikko, A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 2013, 10, 026010. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, E.; Basu, A. A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Leung, V.W.; Lee, J.; Li, S.; Yu, S.; Kilfovle, C.; Larson, L.; Nurmikko, A.; Laiwalla, F. A CMOS Distributed Sensor System for High-Density Wireless Neural Implants for Brain-Machine Interfaces. In Proceedings of the ESSCIRC 2018—IEEE 44th European Solid State Circuits Conference (ESSCIRC), Dresden, Germany, 3–6 September 2018; pp. 230–233. [Google Scholar]
- White, K.A.; Kim, B.N. Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal–oxide–semiconductor electrode array. Nat. Commun. 2021, 12, 431. [Google Scholar] [CrossRef]
- White, K.A.; Mulberry, G.; Smith, J.; Lindau, M.; Minch, B.A.; Sugaya, K.; Kim, B.N. Single-Cell Recording of Vesicle Release From Human Neuroblastoma Cells Using 1024-ch Monolithic CMOS Bioelectronics. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zheng, W.; Zhang, M.; Yuan, T.; Zhuang, G.; Pan, Y. A Real-Time Data Acquisition and Processing Framework Based on FlexRIO FPGA and ITER Fast Plant System Controller. IEEE Trans. Nucl. Sci. 2016, 63, 1715–1719. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, R.; Zhang, M.; Zhuang, G.; Yuan, T. Design of FPGA based high-speed data acquisition and real-time data processing system on J-TEXT tokamak. Fusion Eng. Des. 2014, 89, 698–701. [Google Scholar] [CrossRef]
- Mulberry, G.; White, K.A.; Kim, B.N. Analysis of Simple Half-Shared Transimpedance Amplifier for Picoampere Biosensor Measurements. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Grinias, J.P.; Whitfield, J.T.; Guetschow, E.D.; Kennedy, R.T. An Inexpensive, Open-Source USB Arduino Data Acquisition Device for Chemical Instrumentation. J. Chem. Educ. 2016, 93, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Ferrero Martín, F.J.; Valledor Llopis, M.; Campo Rodríguez, J.C.; Blanco González, J.R.; Menéndez Blanco, J. Low-cost open-source multifunction data acquisition system for accurate measurements. Measurement 2014, 55, 265–271. [Google Scholar] [CrossRef]
- Kinney, J.P.; Bernstein, J.G.; Meyer, A.J.; Barber, J.B.; Bolivar, M.; Newbold, B.; Scholvin, J.; Moore-Kochlacs, C.; Wentz, C.T.; Kopell, N.J.; et al. A direct-to-drive neural data acquisition system. Front. Neural Circuits 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Rajpal, R.; Mandaliya, H.; Patel, J.; Kumari, P.; Gautam, P.; Raulji, V.; Edappala, P.; Pujara, H.D.; Jha, R. Embedded multi-channel data acquisition system on FPGA for Aditya Tokamak. Fusion Eng. Des. 2016, 112, 964–968. [Google Scholar] [CrossRef]
- Tedjo, W.; Obeidat, Y.; Catandi, G.; Carnevale, E.; Chen, T. Real-Time Analysis of Oxygen Gradient in Oocyte Respiration Using a High-Density Microelectrode Array. Biosensors 2021, 11, 256. [Google Scholar] [CrossRef]
- Tedjo, W.; Chen, T. An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 20–35. [Google Scholar] [CrossRef]
- Zeng, J.; Kuang, L.; Cacho-Soblechero, M.; Georgiou, P. An Ultra-High Frame Rate Ion Imaging Platform Using ISFET Arrays With Real-Time Compression. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 820–833. [Google Scholar] [CrossRef]
- Jung, H.S.; Jung, W.-B.; Wang, J.; Abbott, J.; Horgan, A.; Fournier, M.; Hinton, H.; Hwang, Y.-H.; Godron, X.; Nicol, R.; et al. CMOS electrochemical pH localizer-imager. Sci. Adv. 2022, 8, eabm6815. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.; Ye, T.; Krenek, K.; Qin, L.; Kim, Y.; Wu, W.; Gertner, R.S.; Park, H.; Ham, D. The Design of a CMOS Nanoelectrode Array With 4096 Current-Clamp/Voltage-Clamp Amplifiers for Intracellular Recording/Stimulation of Mammalian Neurons. IEEE J. Solid-State Circuits 2020, 55, 2567–2582. [Google Scholar] [CrossRef] [PubMed]
- Ayers, S.; Gillis, K.D.; Lindau, M.; Minch, B.A. Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Lago, N.; Yoshida, K.; Koch, K.P.; Navarro, X. Assessment of Biocompatibility of Chronically Implanted Polyimide and Platinum Intrafascicular Electrodes. IEEE Trans. Biomed. Eng. 2007, 54, 281–290. [Google Scholar] [CrossRef]
- Nemani, K.V.; Moodie, K.L.; Brennick, J.B.; Su, A.; Gimi, B. In vitro and in vivo evaluation of SU-8 biocompatibility. Mater. Sci. Eng. C 2013, 33, 4453–4459. [Google Scholar] [CrossRef]
- Bélanger, M.C.; Marois, Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review. J. Biomed. Mater. Res. 2001, 58, 467–477. [Google Scholar] [CrossRef]
- Huang, M.; Dorta-Quiñones, C.I.; Minch, B.A.; Lindau, M. On-Chip Cyclic Voltammetry Measurements Using a Compact 1024-Electrode CMOS IC. Anal. Chem. 2021, 93, 8027–8034. [Google Scholar] [CrossRef]
- White, K.A.; Mulberry, G.; Kim, B.N. Parallel 1024-ch Cyclic Voltammetry on Monolithic CMOS Electrochemical Detector Array. IEEE Sens. J. 2020, 20, 4395–4402. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
Pixel sample rate | 40 kS/s |
Array frame rate | 40 kS/s |
Potentiostats | 1024 |
Accumulated sample rate | 40.96 MS/s |
ADC resolution | 16-bit |
ADC sample rate | 1.28 MS/s |
Parallel data streams | 32 |
Accumulated data rate | 81.92 MB/s |
ADC noise | 255 µVRMS @ 1.28 MS/s |
Pixel noise (electrolytic) | 4.71 pARMS |
Potentiostat bandwidth | 17.6 kHz |
Electrode array size | 32 × 32 |
ADC dynamic range | 3 V |
Electrochemical dynamic range | 5 nA |
Transimpedance gain | 84.6 µV/pA |
[1] | [13] | [12] | [39] | [11] | This Work | |
---|---|---|---|---|---|---|
Electrochemical Method | Amperometry/CV | EIS | EIS | CV | Amperometry | Amperometry |
Number of Electrodes | 32 × 32 | 512 × 256 | 64 × 64 | 32 × 32 | 10 × 10 | 32 × 32 |
Electrode Pitch | 100 µm | 10 µm | 20 µm | - | - | 30 µm |
Potentiostat Channels | 64 | 8 | 4096 | 16 | 100 | 1024 |
Current Dynamic Range | 100 pA–10 µA | - | - | ±1.5 nA | - | 5 nA |
Potentiostat Bandwidth | Up to 1 kHz | - | 35 kHz | - | - | 17.6 kHz |
Noise Performance | 220 fA @ 100 Hz | 0.6 aF @ 1 kHz | - | 217 fA at 2 kS/s | 150 fARMS @ 100 Hz | 4.71 pARMS |
Frame Rate (frames/second) | 90 | 0.143 | 0.025 | - | 2000 | 40,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, K.A.; Crocker, M.A.; Kim, B.N. High-Speed 1024-Pixel CMOS Electrochemical Imaging Sensor with 40,000 Frames per Second for Dopamine and Hydrogen Peroxide Imaging. Electronics 2025, 14, 3207. https://doi.org/10.3390/electronics14163207
White KA, Crocker MA, Kim BN. High-Speed 1024-Pixel CMOS Electrochemical Imaging Sensor with 40,000 Frames per Second for Dopamine and Hydrogen Peroxide Imaging. Electronics. 2025; 14(16):3207. https://doi.org/10.3390/electronics14163207
Chicago/Turabian StyleWhite, Kevin A., Matthew A. Crocker, and Brian N. Kim. 2025. "High-Speed 1024-Pixel CMOS Electrochemical Imaging Sensor with 40,000 Frames per Second for Dopamine and Hydrogen Peroxide Imaging" Electronics 14, no. 16: 3207. https://doi.org/10.3390/electronics14163207
APA StyleWhite, K. A., Crocker, M. A., & Kim, B. N. (2025). High-Speed 1024-Pixel CMOS Electrochemical Imaging Sensor with 40,000 Frames per Second for Dopamine and Hydrogen Peroxide Imaging. Electronics, 14(16), 3207. https://doi.org/10.3390/electronics14163207