Self-Supervised Infrared Video Super-Resolution Based on Deformable Convolution
Abstract
:1. Introduction
- (1)
- We propose a self-supervised infrared video SR method. We estimate the potential HR infrared video only from low-quality LR infrared video data, rather than relying on datasets of high-low resolution video pairs, which are often not available in practical applications.
- (2)
- We employ a deformable convolutional network to directly learn alignment and motion information between adjacent infrared video frames. Deformable convolution allows for local deformations to be learned for each pixel, enabling convolutional kernels to adaptively correspond to the shape and structure of the target, which can better preserve fine-grained details in the image, especially in cases of small motion displacement, as is often encountered in infrared videos.
- (3)
- Experimental results demonstrate that this proposed method can obtain high-quality HR infrared videos and perform better than comparison methods. This proposed method can be applied in video SR of various infrared imaging systems, especially for infrared imaging systems used for weak and small target detection and recognition.
2. Proposed Method
2.1. Blur Kernel Estimation Network Nk
2.2. Deformable Convolutional Alignment Network Nw
2.3. Clear Frame Reconstruction Network Nr
2.4. Loss Function
3. Experimental Results and Analysis
3.1. Datasets
3.2. Results and Analysis
3.2.1. Subjective Results
3.2.2. Objective Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, S.; Song, K.; Zhao, W.; Li, S.; Yan, Y. DASR: Dual-Attention Transformer for infrared image super-resolution. Infrared Phys. Technol. 2023, 133, 104837. [Google Scholar] [CrossRef]
- Hu, L.; Hu, L.; Chen, M.H. Edge-enhanced infrared image super-resolution reconstruction model under transformer. Sci. Rep. 2024, 14, 15585. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, B.; Zhou, J.; Lian, C.; Zhang, Q.; Yue, J. Gradient residual attention network for infrared image super-resolution. Opt. Lasers Eng. 2024, 175, 107998. [Google Scholar] [CrossRef]
- Liu, S.; Yan, K.; Qin, F.; Wang, C.; Ge, R.; Zhang, K.; Huang, J.; Peng, Y.; Cao, J. Infrared image super-resolution via lightweight information split network. In Proceedings of the International Conference on Intelligent Computing, Tianjin, China, 5–8 August 2024; Springer Nature: Singapore, 2024; pp. 293–304. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on7 Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.-T.; Zhang, L. Second-order attention network for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11065–11074. [Google Scholar]
- Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single image super-resolution via a holistic attention network. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XII 16. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 191–207. [Google Scholar]
- Kappeler, A.; Yoo, S.; Dai, Q.; Katsaggelos, A.K. Video super-resolution with convolutional neural networks. IEEE Trans. Comput. Imaging 2016, 2, 109–122. [Google Scholar] [CrossRef]
- Liao, R.; Tao, X.; Li, R.; Ma, Z.; Jia, J. Video super-resolution via deep draft-ensemble learning. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 531–539. [Google Scholar]
- Caballero, J.; Ledig, C.; Aitken, A.; Acosta, A.; Totz, J.; Wang, Z.; Shi, W. Real-time video super-resolution with spatio-temporal networks and motion compensation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4778–4787. [Google Scholar]
- Huang, Y.; Wang, W.; Wang, L. Video super-resolution via bidirectional recurrent convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chan, K.C.; Yu, K.; Dong, C.; Change Loy, C. Edvr: Video restoration with enhanced deformable convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Tian, Y.; Zhang, Y.; Fu, Y.; Xu, C. Tdan: Temporally-deformable alignment network for video super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 3360–3369. [Google Scholar]
- Pan, J.; Bai, H.; Dong, J.; Zhang, J.; Tang, J. Deep blind video super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 4811–4820. [Google Scholar]
- Li, D.; Liu, Y.; Wang, Z. Video super-resolution using motion compensation and residual bidirectional recurrent convolutional network. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1642–1646. [Google Scholar]
- Li, G.; Ji, J.; Qin, M.; Niu, W.; Ren, B.; Afghah, F.; Guo, L.; Ma, X. Towards high-quality and efficient video super-resolution via spatial-temporal data overfitting. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 10259–10269. [Google Scholar]
- Lu, M.; Zhang, P. Grouped spatio-temporal alignment network for video super-resolution. IEEE Signal Process. Lett. 2022, 29, 2193–2197. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, M.; Ji, C.; Sui, X.; Bai, J. Cross-frame transformer-based spatio-temporal video super-resolution. IEEE Trans. Broadcast. 2022, 68, 359–369. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Zhu, H.; Chen, Z. Optical flow reusing for high-efficiency space-time video super resolution. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 2116–2128. [Google Scholar] [CrossRef]
- Jiang, Y.; Chan, K.C.K.; Wang, X.; Loy, C.C.; Liu, Z. Reference-based image and video super-resolution via C2-matching. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 8874–8887. [Google Scholar]
- Wen, W.; Ren, W.; Shi, Y.; Nie, Y.; Zhang, J.; Cao, X. Video super-resolution via a spatio-temporal alignment network. IEEE Trans. Image Process. 2022, 31, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jin, S.; Yao, C.; Lin, C.; Zhao, Y. Temporal consistency learning of inter-frames for video super-resolution. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 1507–1520. [Google Scholar] [CrossRef]
- Bai, H.; Pan, J. Self-supervised deep blind video super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 4641–4653. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Yang, X.; Liu, M.Y.; Kautz, J. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8934–8943. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Real, Z.W. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Kingma, D.P.; Ba, J. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ma, S.; Khader, A.; Xiao, L. Complementary features-aware attentive multi-adapter network for hyperspectral object tracking. In Proceedings of the Fourteenth International Conference on Graphics and Image Processing (ICGIP 2022), Nanjing, China, 21–23 October 2022; SPIE: San Francisco, CA, USA, 2023; pp. 686–695. [Google Scholar]
Method | Bicubic | Method in [26] | Ours |
---|---|---|---|
PSNR | 26.935 | 28.233 | 29.890 |
SSIM | 0.826 | 0.857 | 0.881 |
Time (s) | 0.4 | 4.2 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhao, Y.; Chen, M.; Wang, Y.; Ye, X. Self-Supervised Infrared Video Super-Resolution Based on Deformable Convolution. Electronics 2025, 14, 1995. https://doi.org/10.3390/electronics14101995
Chen J, Zhao Y, Chen M, Wang Y, Ye X. Self-Supervised Infrared Video Super-Resolution Based on Deformable Convolution. Electronics. 2025; 14(10):1995. https://doi.org/10.3390/electronics14101995
Chicago/Turabian StyleChen, Jian, Yan Zhao, Mo Chen, Yuwei Wang, and Xin Ye. 2025. "Self-Supervised Infrared Video Super-Resolution Based on Deformable Convolution" Electronics 14, no. 10: 1995. https://doi.org/10.3390/electronics14101995
APA StyleChen, J., Zhao, Y., Chen, M., Wang, Y., & Ye, X. (2025). Self-Supervised Infrared Video Super-Resolution Based on Deformable Convolution. Electronics, 14(10), 1995. https://doi.org/10.3390/electronics14101995