Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health
Abstract
1. Introduction
1.1. Presentation and Literature Review
1.2. Research Objectives
2. Materials and Methods
2.1. Participants
2.2. Research Variables
2.3. Research Instrument
2.4. Statistical Analysis
3. Results
4. Discussion
- To carry out an analogous study seeking homogeneous distributions by areas of knowledge and university tenure, in order to contrast the results obtained here;
- To extend the study by incorporating diverse areas of knowledge, with the aim of obtaining a more general overview of the influence of the area of knowledge on the behavior of the gaps by university tenure analyzed;
- Quantitatively analyze the influence of the age of the participants on the assessments given on the VR, both in the areas of knowledge analyzed and in other areas of knowledge;
- To extend the analysis to other regions, in order to study the dependence of the results on the geographic variable;
- To complete the results obtained here with a qualitative analysis that will allow us to identify the underlying reasons for the gaps identified.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishna, F.; Milne, E.; Bogo, M.; Pereira, L.F. Responding to COVID-19: New trends in social workers’ use of information and communication technology. Clin. Soc. Work. J. 2021, 49, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, J.; Hwang, Y. Relating motivation to information and communication technology acceptance: Self-determination theory perspective. Comput. Hum. Behav. 2015, 51, 418–428. [Google Scholar] [CrossRef]
- Antón-Sancho, Á.; Fernández-Arias, P.; Vergara-Rodríguez, D. Impact of the covid-19 pandemic on the use of ICT tools in science and technology education. J. Sci. Educ. Technol. 2023, 13, 130–158. [Google Scholar] [CrossRef]
- Vergara-Rodríguez, D.; Antón-Sancho, Á.; Fernández-Arias, P. Variables Influencing Professors’ Adaptation to Digital Learning Environments during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 3732. [Google Scholar] [CrossRef]
- Shin, D.H. The role of affordance in the experience of virtual reality learning: Technological and affective affordances in virtual reality. Telemat. Inform. 2017, 34, 1826–1836. [Google Scholar] [CrossRef]
- Wohlgenannt, I.; Simons, A.; Stieglitz, S. Virtual reality. Bus. Inf. Syst. Eng. 2020, 62, 455–461. [Google Scholar] [CrossRef]
- Riva, G. Virtual reality in psychotherapy. CyberPsychol. Behav. 2005, 8, 220–230. [Google Scholar] [CrossRef]
- Pan, Z.; Cheok, A.D.; Yang, H.; Zhu, J.; Shi, J. Virtual reality and mixed reality for virtual learning environments. Comput. Graph. 2006, 30, 20–28. [Google Scholar] [CrossRef]
- Jonathan, N.T.; Bachri, M.R.; Wijaya, E.; Ramdhan, D.; Chowanda, A. The efficacy of virtual reality exposure therapy (VRET) with extra intervention for treating PTSD symptoms. Procedia Comput. Sci. 2023, 216, 252–259. [Google Scholar] [CrossRef]
- Zheng, J.M.; Chan, K.W.; Gibson, I. Virtual reality. IEEE Potentials 1998, 17, 20–23. [Google Scholar] [CrossRef]
- Zhao, Q. A survey on virtual reality. Sci. China Inf. Sci. 2009, 52, 348–400. [Google Scholar] [CrossRef]
- Kolbe, L.; Jaywant, A.; Gupta, A.; Vanderlind, W.M.; Jabbour, G. Use of virtual reality in the inpatient rehabilitation of COVID-19 patients. Gen. Hosp. Psych. 2021, 71, 76–81. [Google Scholar] [CrossRef]
- Singh, R.P.; Javaid, M.; Kataria, R.; Tyagi, M.; Haleem, A.; Suman, R. Significant applications of virtual reality for COVID-19 pandemic. Diabetes Metab. Res. Rev. 2020, 14, 661–664. [Google Scholar] [CrossRef]
- Tran, Q.H.; Nguyen, T.M. Determinants in student satisfaction with online learning: A survey study of second-year students at private universities in HCMC. TESOL Int. J. 2022, 2, 63–80. [Google Scholar] [CrossRef]
- Elshami, W.; Taha, M.H.; Abuzaid, M.; Saravanan, C.; Al Kawas, S.; Abdalla, M.E. Satisfaction with online learning in the new normal: Perspective of students and faculty at medical and health sciences colleges. Med. Educ. Online 2021, 26, 1920090. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S. Management challenges in chronic obstructive pulmonary disease in the COVID-19 pandemic: Telehealth and virtual reality. J. Clin. Med. 2021, 10, 1261. [Google Scholar] [CrossRef]
- Hatta, M.H.; Sidi, H.; Siew Koon, C.; Che Roos, N.A.; Sharip, S.; Abdul Samad, F.D.; Mohamed Saini, S. Virtual reality (VR) technology for treatment of mental health problems during COVID-19: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 5389. [Google Scholar] [CrossRef] [PubMed]
- Di Lanzo, J.A.; Valentine, A.; Sohel, F.; Yapp, A.Y.; Muparadzi, K.C.; Abdelmalek, M. A review of the uses of virtual reality in engineering education. Comput. Appl. Eng. Educ. 2020, 28, 748–763. [Google Scholar] [CrossRef]
- Pantelidis, V.S. Virtual reality and engineering education. Comput. Appl. Eng. Educ. 1997, 5, 3–12. [Google Scholar] [CrossRef]
- Duffy, V.G.; Salvendy, G. Concurrent engineering and virtual reality for human resource planning. Comput. Ind. 2000, 42, 109–125. [Google Scholar] [CrossRef]
- Jayaram, S.; Connacher, H.I.; Lyons, K.W. Virtual assembly using virtual reality techniques. Comput. Aided Des. 1997, 29, 575–584. [Google Scholar] [CrossRef]
- McCloy, R.; Stone, R. Virtual reality in surgery. Br. Med. J. 2001, 323, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Székely, G.; Satava, R.M. Virtual reality in medicine. Br. Med. J. 1999, 319, 1305. [Google Scholar] [CrossRef] [PubMed]
- Satava, R.M. Medical applications of virtual reality. J. Med. Syst. 1995, 19, 275–280. [Google Scholar] [CrossRef]
- Soliman, M.; Pesyridis, A.; Dalaymani-Zad, D.; Gronfula, M.; Kourmpetis, M. The application of virtual reality in engineering education. Appl. Sci. 2021, 11, 2879. [Google Scholar] [CrossRef]
- Kraus, N.; Marchenko, O. Innovative-digital entrepreneurship as key link of Industry X. 0 formation in the conditions of virtual reality. Balt. J. Econ. Stud. 2021, 7, 47–56. [Google Scholar] [CrossRef]
- Vergara, D.; Fernández-Arias, P.; Extremera, J.; Dávila, L.P.; Rubio, M.P. Educational trends post COVID-19 in engineering: Virtual laboratories. Mater. Today Proc. 2022, 49, 155–160. [Google Scholar] [CrossRef]
- Try, S.; Panuwatwanich, K.; Tanapornraweekit, G.; Kaewmoracharoen, M. Virtual reality application to aid civil engineering laboratory course: A multicriteria comparative study. Comput. Appl. Eng. Educ. 2021, 29, 1771–1792. [Google Scholar] [CrossRef]
- Behzadan, A.H.; Timm, B.W.; Kamat, V.R. General-purpose modular hardware and software framework for mobile outdoor augmented reality applications in engineering. Adv. Eng. Inform. 2008, 22, 90–105. [Google Scholar] [CrossRef]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. Interactive virtual platform for simulating a concrete compression test. Key Eng. Mater. 2013, 572, 582–585. [Google Scholar] [CrossRef]
- Vergara, D.; Antón-Sancho, Á.; Dávila, L.P.; Fernández-Arias, P. Virtual reality as a didactic resource from the perspective of engineering teachers. Comput. Appl. Eng. Educ. 2022, 30, 1086–1101. [Google Scholar] [CrossRef]
- Ahmed, S. A review on using opportunities of augmented reality and virtual reality in construction project management. Organ. Technol. Manag. Constr. 2018, 10, 1839–1852. [Google Scholar] [CrossRef]
- Le, Q.T.; Pedro, A.; Park, C.S. A social virtual reality based construction safety education system for experiential learning. J. Intell. Robot. Syst. 2015, 79, 487–506. [Google Scholar] [CrossRef]
- Getuli, V.; Capone, P.; Bruttini, A.; Isaac, S. BIM-based immersive Virtual Reality for construction workspace planning: A safety-oriented approach. Autom. Constr. 2020, 114, 103160. [Google Scholar] [CrossRef]
- Mujber, T.S.; Szecsi, T.; Hashmi, M.S. Virtual reality applications in manufacturing process simulation. J. Mater. Process. Technol. 2004, 155, 1834–1838. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Kang, S.C.; Al-Hussein, M. Virtual reality applications for the built environment: Research trends and opportunities. Autom. Constr. 2020, 118, 103311. [Google Scholar] [CrossRef]
- Woksepp, S.; Olofsson, T. Credibility and applicability of virtual reality models in design and construction. Adv. Eng. Inform. 2008, 22, 520–528. [Google Scholar] [CrossRef]
- Kaleja, P.; Kozlovská, M. Virtual Reality as Innovative Approach to the Interior Designing. SSP J. Civil Eng. 2017, 12, 109–116. [Google Scholar] [CrossRef]
- Sumdani, H.; Aguilar-Salinas, P.; Avila, M.J.; Barber, S.R.; Dumont, T. Utility of augmented reality and virtual reality in spine surgery: A systematic review of the literature. World Neurosurg. 2022, 161, 8–17. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Kassem, M.A.; Li, H.; Hua, B. Application of VR technology in civil engineering education. Comput. Appl. Eng. Educ. 2022, 30, 335–348. [Google Scholar] [CrossRef]
- Huang, W.; Roscoe, R.D. Head-mounted display-based virtual reality systems in engineering education: A review of recent research. Comput. Appl. Eng. Educ. 2021, 29, 1420–1435. [Google Scholar] [CrossRef]
- Berni, A.; Borgianni, Y. Applications of virtual reality in engineering and product design: Why, what, how, when and where. Electronics 2020, 9, 1064. [Google Scholar] [CrossRef]
- Wolfartsberger, J. Analyzing the potential of Virtual Reality for engineering design review. Autom. Constr. 2019, 104, 27–37. [Google Scholar] [CrossRef]
- Riva, G. Virtual reality for health care: The status of research. Cyberpsychol. Behav. Soc. Netw. 2002, 5, 219–225. [Google Scholar] [CrossRef]
- Ruthenbeck, G.S.; Reynolds, K.J. Virtual reality for medical training: The state-of-the-art. J. Simul. 2015, 9, 16–26. [Google Scholar] [CrossRef]
- Hao, J.; Pu, Y.; Chen, Z.; Siu, K.C. Effects of virtual reality-based telerehabilitation for stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 2023, 32, 106960. [Google Scholar] [CrossRef]
- Knight, R.G.; Titov, N. Use of virtual reality tasks to assess prospective memory: Applicability and evidence. Brain Impair. 2009, 10, 3–13. [Google Scholar] [CrossRef]
- Smits, M.; Staal, J.B.; Van Goor, H. Could Virtual Reality play a role in the rehabilitation after COVID-19 infection? BMJ Open Sport Exerc. Med. 2020, 6, e000943. [Google Scholar] [CrossRef]
- Jo, H.J.; Jung, Y.H.; Hong, Y.J.; Shin, Y.B.; Baek, K.D.; Kim, E.; Kim, J.J. The applicability of virtual reality-based training for controlling anger in aggressive individuals. Cyberpsychol. Behav. Soc. Netw. 2022, 25, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Mabrey, J.D.; Reinig, K.D.; Cannon, W.D. Virtual reality in orthopaedics: Is it a reality? Clin. Orthop. Relat. Res. 2010, 468, 2586–2591. [Google Scholar] [CrossRef]
- Xie, Y.; Ryder, L.; Chen, Y. Using interactive virtual reality tools in an advanced Chinese language class: A case study. TechTrends 2019, 63, 251–259. [Google Scholar] [CrossRef]
- Southgate, E.; Smith, S.P.; Cividino, C.; Saxby, S.; Kilham, J.; Eather, G.; Bergin, C. Embedding immersive virtual reality in classrooms: Ethical, organisational and educational lessons in bridging research and practice. Int. J. Child. Comput. Interact. 2019, 19, 19–29. [Google Scholar] [CrossRef]
- Sorensen, C.; Donovan, J. An examination of factors that impact the retention of online students at a for-profit university. Online Learn. J. 2017, 21, 206–221. [Google Scholar] [CrossRef]
- Ji, Y. Use of virtual reality technology in animation course teaching. Int. J. Emerg. Technol. 2021, 16, 191–208. [Google Scholar] [CrossRef]
- Adedoyin, O.B.; Soykan, E. COVID-19 pandemic and online learning: The challenges and opportunities. Interact. Learn. Environ. 2020, 1–13. [Google Scholar] [CrossRef]
- Tsekhmister, Y.; Konovalova, T.; Tsekhmister, B.; Agrawal, A.; Ghosh, D. Evaluation of virtual reality technology and online teaching system for medical students in Ukraine during COVID-19 Pandemic. Int. J. Emerg. Technol. 2021, 16, 127–139. [Google Scholar] [CrossRef]
- Antón-Sancho, Á.; Fernández-Arias, P.; Vergara, D. Virtual Reality in Health Science Education: Professors’ Perceptions. Multimodal Technol. Interact. 2022, 6, 110. [Google Scholar] [CrossRef]
- Antón-Sancho, Á.; Vergara, D.; Fernández-Arias, P.; Ariza-Echeverri, E.A. Didactic use of virtual reality in Colombian universities: Professors’ perspective. Multimodal Technol. Interact. 2022, 6, 38. [Google Scholar] [CrossRef]
- Krumsvik, R.J. Aprendizaje situado y competencia digital docente. Educ. Inf. Technol. 2008, 13, 279–290. [Google Scholar] [CrossRef]
- Johannesen, M.; Øgrim, L.; Giæver, T.H. Notion in motion: Teachers’ digital competence. Nord. J. Digit. Lit. 2014, 9, 300–312. [Google Scholar] [CrossRef]
- Røkenes, F.M.; Krumsvik, R.J. Development of student teachers’ digital competence in teacher education-A literature review. Nord. J. Digit. Lit. 2014, 9, 250–280. [Google Scholar] [CrossRef]
- Pettersson, F. On the issues of digital competence in educational contexts—A review of literature. Educ. Inf. Technol. 2018, 23, 1005–1021. [Google Scholar] [CrossRef]
- Instefjord, E.J.; Munthe, E. Educating digitally competent teachers: A study of integration of professional digital competence in teacher education. Teach. Teach. Educ. 2017, 67, 37–45. [Google Scholar] [CrossRef]
- Krpálek, P.; Berková, K.; Kubišová, A.; Krelová, K.K.; Frendlovská, D.; Spiesová, D. Formation of professional competences and soft skills of public administration employees for sustainable professional development. Sustainability 2021, 13, 5533. [Google Scholar] [CrossRef]
- Bendeck Soto, J.; Toro Ocampo, D.; Beltrán Colon, L.; Oropesa, A.V. Perceptions of ImmerseMe virtual reality platform to improve English communicative skills in higher education. Int. J. Interact. Mob. Technol. 2020, 14, 4–19. [Google Scholar] [CrossRef]
- Rasimah, C.M.Y.; Ahmad, A.; Zaman, H.B. Evaluation of user acceptance of mixed reality technology, Australas. J. Educ. Technol. 2011, 27, 1369–1387. [Google Scholar] [CrossRef]
- Naidu, P.; Derani, N.E.S. A comparative study on quality of education received by students of private universities versus public universities. Procedia Econ. Finance 2016, 35, 659–666. [Google Scholar] [CrossRef]
- Jabbouri, N.I.; Siron, R.; Zahari, I.; Khalid, M. Impact of information technology infrastructure on innovation performance: An empirical study on private universities in Iraq. Procedia Econ. Finance 2016, 39, 861–869. [Google Scholar] [CrossRef]
- Vergara, D.; Antón-Sancho, Á.; Fernández-Arias, P. Player profiles for game-based applications in engineering education. Comput. Appl. Eng. Educ. 2023, 31, 154–175. [Google Scholar] [CrossRef]
Factor | Cronbach’s Alpha | CR |
---|---|---|
Digital skills | 0.7108 | 0.7001 |
Technical aspects | 0.8352 | 0.8193 |
Usability of VR | 0.7723 | 0.7212 |
Disadvantages of VR | 0.7607 | 0.7208 |
Future projection | 0.7339 | 0.7223 |
Didactic aspects | 0.8320 | 0.8107 |
Factor | Mean (Out of 5) Health Sciences | Mean (Out of 5) Engineering | t-Statistic | p-Value |
---|---|---|---|---|
Digital skills | 2.77 | 2.74 | 0.59 | 0.5539 |
Technical aspects | 3.88 | 4.18 | –6.77 | <0.0001 * |
Usability of VR | 4.15 | 4.26 | –2.76 | 0.0059 * |
Disadvantages of VR | 3.58 | 3.57 | 0.12 | 0.9019 |
Future projection | 3.96 | 3.85 | 1.94 | 0.0527 |
Didactic aspects | 4.11 | 4.15 | –1.12 | 0.2610 |
Factor | Std. Deviation (Out of 5) Health Sciences | Std. Deviation (Out of 5) Engineering | Levene F | p-Value |
---|---|---|---|---|
Digital skills | 1.18 | 1.27 | 12.35 | 0.0005 * |
Technical aspects | 1.03 | 0.87 | 27.02 | <0.0001 * |
Usability of VR | 0.86 | 0.90 | 12.02 | 0.0005 * |
Disadvantages of VR | 1.32 | 1.24 | 26.77 | <0.0001 * |
Future projection | 0.93 | 1.05 | 12.70 | 0.0004 * |
Didactic aspects | 1.02 | 1.01 | 13.20 | 0.0003 * |
Competence | Technical | Usability | Disadvantages | Future | Didactic | |
---|---|---|---|---|---|---|
Competence | 1 | –0.0918 | 0.1986 * | 0.0770 | 0.0321 | 0.1603 * |
Technical | 1 | 0.5565 * | 0.0439 | 0.2804 * | 0.3045 * | |
Usability | 1 | 0.1338 * | 0.3847 * | 0.3438 | ||
Disadvantages | 1 | 0.0173 | –0.2689 * | |||
Future | 1 | 0.2146 | ||||
Didactic | 1 |
Competence | Technical | Usability | Disadvantages | Future | Didactic | |
---|---|---|---|---|---|---|
Competence | 1 | –0.0250 | 0.1181 * | 0.1554 * | 0.1785 * | –0.0808 |
Technical | 1 | 0.2500 * | 0.0501 | 0.2574 * | 0.0293 | |
Usability | 1 | 0.1980 * | 0.2854 * | 0.0951 | ||
Disadvantages | 1 | 0.1018 * | –0.3080 * | |||
Future | 1 | 0.0077 | ||||
Didactic | 1 |
Health | Engineering | MANOVA F | p-Value | |||
---|---|---|---|---|---|---|
Private | Public | Private | Public | |||
Competence | 2.85 | 2.71 | 2.71 | 2.75 | 2.17 | 0.1412 |
Technical | 3.91 | 3.85 | 4.22 | 4.15 | 0.03 | 0.8526 |
Usability | 4.26 | 4.07 | 4.52 | 4.08 | 9.17 | 0.0025 * |
Disadvantages | 3.63 | 3.54 | 3.70 | 3.49 | 1.87 | 0.1716 |
Future | 3.89 | 4.02 | 3.87 | 3.84 | 1.86 | 0.1726 |
Didactic | 4.30 | 3.97 | 4.21 | 4.11 | 11.45 | 0.0007 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Arias, P.; Antón-Sancho, Á.; Sánchez-Jiménez, M.; Vergara, D. Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health. Electronics 2023, 12, 1366. https://doi.org/10.3390/electronics12061366
Fernández-Arias P, Antón-Sancho Á, Sánchez-Jiménez M, Vergara D. Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health. Electronics. 2023; 12(6):1366. https://doi.org/10.3390/electronics12061366
Chicago/Turabian StyleFernández-Arias, Pablo, Álvaro Antón-Sancho, María Sánchez-Jiménez, and Diego Vergara. 2023. "Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health" Electronics 12, no. 6: 1366. https://doi.org/10.3390/electronics12061366
APA StyleFernández-Arias, P., Antón-Sancho, Á., Sánchez-Jiménez, M., & Vergara, D. (2023). Statistical Analysis of Professors’ Assessment Regarding the Didactic Use of Virtual Reality: Engineering vs. Health. Electronics, 12(6), 1366. https://doi.org/10.3390/electronics12061366