The Inflection Point of Single Event Transient in SiGe HBT at a Cryogenic Temperature
Abstract
:1. Introduction
2. TCAD 2-D Process Simulation
2.1. DUT Description
2.2. TCAD 2-D Process Model
2.3. Simulation Results
3. Ion Track Simulation by Geant4
3.1. Initial Ion Track Structures
3.2. Embedding Ion Track to TCAD Simulation
3.3. Simulation Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cressler, J.D. Radiation Effects in SiGe Technology. IEEE Trans. Nucl. Sci. 2013, 60, 1992–2014. [Google Scholar] [CrossRef]
- Cressler, J.D. Silicon-Germanium as an Enabling Technology for Extreme Environment Electronics. IEEE Trans. Device Mater. Reliab. 2010, 10, 437–448. [Google Scholar] [CrossRef]
- Rieh, J.S.; Jagannathan, B.; Greenberg, D.R.; Meghelli, M.; Rylyakov, A.; Guarin, F.; Yang, Z.; Ahlgren, D.C.; Freeman, G.; Cottrell, P.; et al. SiGe Heterojunction Bipolar Transistors and Circuits Toward Terahertz Communication Applications. IEEE Trans. Microw. Theory Tech. 2004, 52, 2390–2408. [Google Scholar] [CrossRef]
- Ildefonso, A.; Lourenco, N.E.; Fleetwood, Z.E.; Wachter, M.T.; Tzintzarov, G.N.; Cardoso, A.S.; Roche, N.J.H.; Khachatrian, A.; McMorrow, D.; Buchner, S.P.; et al. Single-Event Transient Response of Comparator Pre-Amplifiers in a Complementary SiGe Technology. IEEE Trans. Nucl. Sci. 2017, 64, 89–96. [Google Scholar] [CrossRef]
- Lourenco, N.E.; Fleetwood, Z.E.; Ildefonso, A.; Wachter, M.T.; Roche, N.J.H.; Khachatrian, A.; McMorrow, D.; Buchner, S.P.; Warner, J.H.; Itsuji, H.; et al. The Impact of Technology Scaling on the Single-Event Transient Response of SiGe HBTs. IEEE Trans. Nucl. Sci. 2017, 64, 406–414. [Google Scholar] [CrossRef]
- Reed, R.A.; Marshall, P.W.; Pickel, J.C.; Carts, M.A.; Fodness, B.; Guofu, N.; Fritz, K.; Vizkelethy, G.; Dodd, P.E.; Irwin, T.; et al. Heavy-ion broad-beam and microprobe studies of single-event upsets in 0.20-μm SiGe heterojunction bipolar transistors and circuits. IEEE Trans. Nucl. Sci. 2003, 50, 2184–2190. [Google Scholar] [CrossRef]
- Guofu, N.; Hua, Y.; Varadharajaperumal, M.; Yun, S.; Cressler, J.D.; Krithivasan, R.; Marshall, P.W.; Reed, R. Simulation of a new back junction approach for reducing charge collection in 200 GHz SiGe HBTs. IEEE Trans. Nucl. Sci. 2005, 52, 2153–2157. [Google Scholar] [CrossRef]
- Vizkelethy, G.; Reed, R.A.; Marshall, P.W.; Pellish, J.A. Ion beam induced charge (IBIC) studies of silicon germanium heterojunction bipolar transistors (HBTs). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 260, 264–269. [Google Scholar] [CrossRef]
- Sutton, A.; Moen, K.; Cressler, J.D.; Carts, M.; Marshall, P.; Pellish, J.; Ramachandran, V.; Reed, R.; Alles, M.; Niu, G. Proton-induced SEU in SiGe digital logic at cryogenic temperatures. Solid-State Electron. 2008, 52, 1652–1659. [Google Scholar] [CrossRef]
- Xu, Z.; Niu, G.; Luo, L.; Cressler, J.D.; Alles, M.L.; Reed, R.; Mantooth, H.A.; Holmes, J.; Marshall, P.W. Charge Collection and SEU in SiGe HBT Current Mode Logic Operating at Cryogenic Temperatures. IEEE Trans. Nucl. Sci. 2010, 57, 2085050. [Google Scholar] [CrossRef]
- Luo, L.; Niu, G.; Moen, K.A.; Cressler, J.D. Compact Modeling of the Temperature Dependence of Parasitic Resistances in SiGe HBTs Down to 30 K. IEEE Trans. Electron Devices 2009, 56, 2169–2177. [Google Scholar] [CrossRef]
- Knudson, A.R.; Campbell, A.B.; Hauser, J.R.; Jessee, M.; Stapor, W.J.; Shapiro, P. Charge Transport by the Ion Shunt Effect. IEEE Trans. Nucl. Sci. 1986, 33, 1560–1564. [Google Scholar] [CrossRef]
- Pan, X.; Guo, H.; Feng, Y.; Liu, Y.; Zhang, J.; Fu, J.; Yu, G. Temperature dependence of single event transient in SiGe HBT for cryogenic application. Chin. Phys. B 2022. [Google Scholar] [CrossRef]
- Pan, X.; Guo, H.; Feng, Y.; Liu, Y.; Zhang, J.; Li, Z.; Luo, Y.; Zhang, F.; Wang, T.; Zhao, W.; et al. Single event transient characterization of SiGe HBT by SPA experiment and 3-D process simulation. Sci. China Technol. Sci. 2022, 65, 1193–1205. [Google Scholar] [CrossRef]
- Niu, G.; Krithivasan, R.; Cressler, J.D.; Riggs, P.A.; Randall, B.A.; Marshall, P.W.; Reed, R.A.; Gilbert, B. A comparison of SEU tolerance in high-speed SiGe HBT digital logic designed with multiple circuit architectures. IEEE Trans. Nucl. Sci. 2002, 49, 3107–3114. [Google Scholar] [CrossRef]
- Dodd, P.E.; Musseau, O.; Shaneyfelt, M.R.; Sexton, F.W.; D’Hose, C.; Hash, G.L.; Martinez, M.; Loemker, R.A.; Leray, J.L.; Winokur, P.S. Impact of ion energy on single-event upset. IEEE Trans. Nucl. Sci. 1998, 45, 2483–2491. [Google Scholar] [CrossRef]
- Raine, M.; Gaillardin, M.; Sauvestre, J.-E.; Flament, O.; Bournel, A.; Aubry-Fortuna, V. Effect of the Ion Mass and Energy on the Response of 70-nm SOI Transistors to the Ion Deposited Charge by Direct Ionization. IEEE Trans. Nucl. Sci. 2010, 57, 1892–1899. [Google Scholar] [CrossRef]
- Weller, R.A.; Mendenhall, M.H.; Reed, R.A.; Schrimpf, R.D.; Warren, K.M.; Sierawski, B.D.; Massengill, L.W. Monte Carlo Simulation of Single Event Effects. IEEE Trans. Nucl. Sci. 2010, 57, 1726–1746. [Google Scholar] [CrossRef]
- McPherson, J.A.; Kowal, P.J.; Pandey, G.K.; Chow, T.P.; Ji, W.; Woodworth, A.A. Heavy Ion Transport Modeling for Single-Event Burnout in SiC-Based Power Devices. IEEE Trans. Nucl. Sci. 2019, 66, 474–481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Guo, H.; Lu, C.; Zhang, H.; Liu, Y. The Inflection Point of Single Event Transient in SiGe HBT at a Cryogenic Temperature. Electronics 2023, 12, 648. https://doi.org/10.3390/electronics12030648
Pan X, Guo H, Lu C, Zhang H, Liu Y. The Inflection Point of Single Event Transient in SiGe HBT at a Cryogenic Temperature. Electronics. 2023; 12(3):648. https://doi.org/10.3390/electronics12030648
Chicago/Turabian StylePan, Xiaoyu, Hongxia Guo, Chao Lu, Hong Zhang, and Yinong Liu. 2023. "The Inflection Point of Single Event Transient in SiGe HBT at a Cryogenic Temperature" Electronics 12, no. 3: 648. https://doi.org/10.3390/electronics12030648
APA StylePan, X., Guo, H., Lu, C., Zhang, H., & Liu, Y. (2023). The Inflection Point of Single Event Transient in SiGe HBT at a Cryogenic Temperature. Electronics, 12(3), 648. https://doi.org/10.3390/electronics12030648