A 110 GHz Feedback Amplifier Design Based on Quasi-Linear Analysis
Abstract
:1. Introduction
2. Gain of Amplifier
2.1. Gma, and K-Factor
2.2. Unilateral Power Gain
2.3. Maximum Achievable Gain
2.4. λ-Plane
3. Discussion Based on Quasi-Linear Analysis
3.1. Output Voltage
3.2. Output Power
3.3. Impedance Matching
3.4. Sensitivity of
4. Feedback Amplifier Design Methodology
4.1. Boost the Power Gain
4.2. PG Product
5. Six-Stage Feedback Amplifier
5.1. The Last Output Stage
5.2. The Entire Amplifier
6. Measurement
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Siegel, P.H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Huang, K.; Wang, Z. Terahertz terabit wireless communication. IEEE Microw. Mag. 2011, 12, 108–116. [Google Scholar] [CrossRef]
- Weber, R.; Cwiklinski, M.; Wagner, S.; Lozar, R.; Massler, H.; Bruckner, P.; Quay, R. A Beyond 110 GHz GaN Cascode Low-Noise Amplifier with 20.3 dBm Output Power. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018. [Google Scholar]
- Kim, J.; Buckwalter, J.F. Staggered Gain for 100+ GHz Broadband Amplifiers. IEEE J. Solid-State Circuits 2011, 46, 1123–1136. [Google Scholar]
- Chen, P.H.; Kao, J.C.; Yu, T.L.; Hsu, Y.W.; Teng, Y.M.; Huang, G.W.; Wang, H. A 110–180 GHz broadband amplifier in 65-nm CMOS process. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013. [Google Scholar]
- Kobayashi, K.W.; Kumar, V. A Broadband 70–110-GHz E-/W-Band LNA Using a 90-nm T-Gate GaN HEMT Technology. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 885–888. [Google Scholar] [CrossRef]
- Shinohara, K.; Corrion, A.; Regan, D.; Milosavljevic, I.; Brown, D.; Burnham, S.; Willadsen, P.J.; Butler, C.; Schmitz, A.; Wheeler, D.; et al. 220GHz fT and 400GHz fmax in 40-nm GaN DH-HEMTs with re-grown ohmic. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010. [Google Scholar]
- Urteaga, M.; Pierson, R.; Rowell, P.; Jain, V.; Lobisser, E.; Rodwell, M.J.W. 130nm InP DHBTs with ft>0.52THz and fmax>1.1THz. In Proceedings of the 69th Device Research Conference, Santa Barbara, CA, USA, 20–22 June 2011. [Google Scholar]
- Xu, Z.; Xie, Q.; Wang, Z. A Study of Collaborative Gain/Noise Optimization for LNAs at Near-Frequencies Based on a Novel Gain-Noise Plane Approach. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 51–55. [Google Scholar] [CrossRef]
- Singhakowinta, A.; Boothroyd, A.R. Gain capability of two-port amplifiers. Int. J. Electron 1966, 21, 549–560. [Google Scholar] [CrossRef]
- Momeni, O. A 260GHz amplifier with 9.2dB gain and –3.9dBm saturated power in 65nm CMOS. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013. [Google Scholar]
- Bameri, H.; Momeni, O. A high-gain mm-wave amplifier design: An analytical approach to power gain boosting. IEEE J. Solid-State Circuits 2017, 52, 357–370. [Google Scholar] [CrossRef]
- Wang, Z.; Heydari, P. A study of operating condition and design methods to achieve the upper limit of power gain in amplifiers at near- fmax frequencies. IEEE Trans. Circuits Syst. I 2017, 64, 261–271. [Google Scholar] [CrossRef]
- Park, D.; Utomo, D.R.; Lam, B.H.; Lee, S.; Hong, J. A 230-260-GHz wideband and high-gain amplifier in 65-nm CMOS based on dual-peak Gmax-core. IEEE J. Solid-State Circuits 2019, 54, 1613–1623. [Google Scholar] [CrossRef]
- Dong, R.; Katayama, K.; Takano, K.; Lee, S.; Yoshida, T.; Amakawa, S.; Fujishima, M. 79–85 GHz CMOS Amplifier with 0.35 V Supply Voltage. In Proceedings of the 13th European Microwave Integrated Circuits Conference, Madrid, Spain, 23–25 September 2018. [Google Scholar]
- Xing, Y.; Dong, R. Graphical Approach to Optimization of Maximally Efficient-Gain-Boosted Feedback Amplifiers. Electronics 2023, 12, 2895. [Google Scholar] [CrossRef]
- Amakawa, S.; Ito, Y. Graphical approach to analysis and design of gain-boosted near-fmax feedback amplifiers. In Proceedings of the 2016 46th European Microwave Conference (EuMC), London, UK, 4–6 October 2016. [Google Scholar]
- Park, D.W.; Utomo, D.R.; Yun, B. Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-Gmax Gain Boosting Technique. IEEE J. Solid-State Circuits 2021, 56, 3388–3398. [Google Scholar]
- Simic, D.; Reynaert, P. Analysis and Design of Lossy Capacitive over-Neutralization Technique for Amplifiers Operating near fmax. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1945–1955. [Google Scholar]
- Bameri, H.; Momeni, O. An Embedded 200 GHz Power Amplifier with 9.4 dBm Saturated Power and 19.5 dB Gain in 65 nm CMOS. In Proceedings of the 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Los Angeles, CA, USA, 4–6 August 2020. [Google Scholar]
- Xinyan, T.; Johan, N.; Alaaeldien, M.; Khaled, K.; Akshay, V.; Björn, D.; Piet, W. Design of D-Band Transformer-Based Gain-Boosting Class-AB Power Amplifiers in Silicon Technologies. IEEE Trans. Circuits Syst. I: Regul. Pap. 2020, 67, 1447–1458. [Google Scholar]
- Singhakowinta, A.; Boothroyd, A. On linear two-port amplifiers. IEEE Trans. Circuit Theory 1964, 11, 169. [Google Scholar] [CrossRef]
- Chen, W.-K. Active Network Analysis: Feedback Amplifier Theory, 2nd ed.; WSPC: Chicago, IL, USA, 2016. [Google Scholar]
- Rollett, J. Stability and power-gain invariants of linear two ports. IRE Trans. Circuit Theory 1962, 9, 29–32. [Google Scholar] [CrossRef]
- Mason, S.J. Power gain in feedback amplifier. IRE Trans. Circuit Theory 1954, 1, 20–25. [Google Scholar] [CrossRef]
- Wu, W.; Chen, R.; Chen, S.; Wang, J.; Chen, L.; Zhang, L.; Wang, Y. A Compact W-Band Power Amplifier with a Peak PAE of 21.1% in 65-nm CMOS Technology. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 703–706. [Google Scholar] [CrossRef]
- Romstadt, J.; Lammert, V.; Pohl, N.; Issakov, V. Transformer-Coupled D-Band PA with 11.8 dBm Psat and 6.3% PAE in 0.13μm SiGe BiCMOS. In Proceedings of the 2020 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Antonio, TX, USA, 26–29 January 2020. [Google Scholar]
- Elazar, T.; Socher, E. 95GHz 13dBm IQ-combined PA in 65nm CMOS. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021. [Google Scholar]
Reference | This Work | [20] | [21] | [26] | [27] | [28] |
---|---|---|---|---|---|---|
Technology | 40 nm CMOS | 65 nm CMOS | 28 nm CMOS | 65 nm CMOS | 130 nm BiCMOS | 65 nm CMOS |
Topology | Differential six-stage cascade | eight-stage cascade | Differential four-stage cascade | three-stage CS * | Full differential two-stage | Differential three-stage CS * |
Frequency (GHz) | 110 | 200 | 132 | 95 | 114 | 95 |
Gain (dB) | 26.5 | 19.5 | 22.5 | 20 | 18.5 | 20.5 |
Saturation power (dBm) | 13 | 9.4 | 8 | 13 | 11.8 | 13.4 |
Bandwidth (GHz) | 104–118 | 195–209 | 121–143 | 92.5–98.5 | N/A | 88–100 |
Area () | 0.779 | 0.92 | 0.0265 ** | 0.11 | 0.35 | 0.025 ** |
DC power (mW) | 182 | 732 | N/A | 74 | 231 | 170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, R.; Song, Y.; Xing, Y. A 110 GHz Feedback Amplifier Design Based on Quasi-Linear Analysis. Electronics 2023, 12, 3725. https://doi.org/10.3390/electronics12173725
Dong R, Song Y, Xing Y. A 110 GHz Feedback Amplifier Design Based on Quasi-Linear Analysis. Electronics. 2023; 12(17):3725. https://doi.org/10.3390/electronics12173725
Chicago/Turabian StyleDong, Ruibing, Yiheng Song, and Yang Xing. 2023. "A 110 GHz Feedback Amplifier Design Based on Quasi-Linear Analysis" Electronics 12, no. 17: 3725. https://doi.org/10.3390/electronics12173725
APA StyleDong, R., Song, Y., & Xing, Y. (2023). A 110 GHz Feedback Amplifier Design Based on Quasi-Linear Analysis. Electronics, 12(17), 3725. https://doi.org/10.3390/electronics12173725