Electrical Performance of Current Commercial Supercapacitors and Their Future Applications
Abstract
1. Introduction
2. Supercapacitors as an Energy Storage Device
3. Performance Measurements
3.1. EDLC Supercapacitor
3.2. Hybrid Asymmetric Supercapacitor
3.3. Battery Capacitor
3.4. Li-Ion Battery
4. Applications and Life Cycle Cost Comparison
- BEVs, fuel cell vehicles and light trains;
- Cold starting trucks;
- Vehicle start–stop functions;
- Wind turbine pitch controls;
- Grid voltage stabilizers;
- Microgrids.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Faraji, S.; Ani, F.N. The development supercapacitor from activated carbon by electroless plating—A review. Renew. Sustain. Energy Rev. 2014, 42, 823–834. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999. [Google Scholar]
- Sharma, P.; Bhatti, T.S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, A.; Tang, J.; Tian, J.; Huang, W.; Cai, J.; Liu, J. Fabrication of Cobaltosic Oxide Nanoparticle-Doped 3D MXene/Graphene Hybrid Porous Aerogels for All-Solid-State Supercapacitors. Chem. A Eurpoean J. 2019, 25, 5547–5554. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M.; Wu, T.; Feng, G. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 2020, 19, 552–558. [Google Scholar] [CrossRef]
- Qu, Z.; Shi, M.; Wu, H.; Liu, Y.; Jiang, J.; Yan, C. An efficicent binder free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high performance capacitive energy storage. J. Power Sources 2018, 410–411, 179–187. [Google Scholar]
- Wang, T.; Chen, H.C.; Yu, F.; Zhao, X.S.; Wang, H. Boosting the cycling stability of transition metal compounds based supercapacitors. Energy Storage Mater. 2018, 16, 545–573. [Google Scholar] [CrossRef][Green Version]
- Jayananda, D.; Kularatna, N.; Steyn-Ross, D.A. Supercapacitor assisted LED (SCALED) technique for renewable energy systems: A very low frequency design approach with short-term DC-UPS capability eliminating battery banks. IET Renew. Power Gener. 2020, 14, 1559–1570. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Kularatna, N.; Gunawardane, K. Energy Storage Devices for Renewable Energy-Based Systems. In Rechargeable Batteries and Supercapacitors, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Zhang, Q.; Zhang, D.; Miao, Z.; Zhang, X.; Chou, S. Research progress in MnO2-Carbon Based Supercapacitor Electrode Materials. Small J. 2018, 14, 1702883. [Google Scholar] [CrossRef]
- Gonzalez, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitor technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef] [PubMed]
- Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism on MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Rochefort, D.; Pont, A.L. Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid. Electrochem. Commun. 2006, 8, 1539–1543. [Google Scholar] [CrossRef]
- Jiang, H.; Li, C.; Sun, T.; Ma, J. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructure and functional mesoporous carbon nanotube electrodes. Nanoscale 2012, 4, 807. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Chen, Z.; Chen, S.; Sum, T.C.; Lin, J.; Shen, Z.X. Synergistic capacitive behavior between polyaniline and carbon black. Electrochim. Acta 2017, 230, 239–244. [Google Scholar] [CrossRef]
- Chang, B.Y.; Ahn, E.; Park, S.M. Real-time staircase cyclic voltammetry Fourier transform electrochemical impedance spectroscopic studies on underpotential deposition of lead on gold. J. Phys. Chem. 2008, 112, 16902–16909. [Google Scholar] [CrossRef]
- Zuo, W.; Li, R.; Zhou, C.; Li, Y.; Xia, J.; Liu, J. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Adv. Sci. 2017, 4, 1600539. [Google Scholar] [CrossRef]
- Sajjad, M.; Amin, M.; Javed, M.S.; Imran, M.; Hu, W.; Mao, Z.; Lu, W. Recent trends in transition metal diselenides (XSe2: X = Ni, Mn, Co) and their composites for high energy faradaic supercapacitors. J. Energy Storage 2021, 43, 103176. [Google Scholar] [CrossRef]
- Arote, S.A. Electrochemical Energy Storage Devices and Supercapacitors; IOP Publishing Ltd.: Philadelphia, PA, USA, 2021. [Google Scholar]
- Lukatskaya, M.R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Naoi, K.; Simon, P. New materials and new configurations for advanced electrochemical capacitors. Electrochem. Soc. Interface 2008, 17, 32–37. [Google Scholar] [CrossRef]
- Haspert, L.C.; Gillette, E.; Lee, S.B.; Rubloff, G.W. Perspective: Hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage. Energy Environm. Sci. 2013, 6, 2578–2590. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wei, T.Y.; Chien, H.C.; Lu, S.Y. Manganese oxide/carbon aerogel composite: An outstanding supercapacitor electrode material. Adv. Energy Mater. 2011, 1, 901–907. [Google Scholar] [CrossRef]
- Simon, P.; Brousse, T.; Favier, F. Supercapacitors Based on Carbon or Pseudocapacitive Materials; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Liu, Y.; Hu, P.; Liu, H.; Song, J.; Umar, A.; Wu, X. Toward a high-performance asymmetric hybrid capacitor by electrode optimization. Inorg. Chem. Front. 2019, 6, 2824–2831. [Google Scholar] [CrossRef]
- Liu, H.; Dai, M.; Zhao, D.; Wu, X.; Wang, B. Realizing superior electrochemical performance of asymmetric capacitors through tailoring electrode architectures. ACS Appl. Energy Mater. 2020, 3, 7004–7010. [Google Scholar] [CrossRef]
- Minakshi, M.; Mitchell, D.R.; Jones, R.T.; Pramanik, N.C.; Jean-Fulcrand, A.; Garnweitner, G. A hybrid electrochemical energy storage device using sustainable electrode materials. ChemistrySelect 2020, 5, 1597–1606. [Google Scholar] [CrossRef]
- Lee, J.H.; Shin, W.H.; Lim, S.Y.; Kim, B.G.; Choi, J.W. Modified graphite and graphene electrodes for high performance lithium-ion hybrid capacitors. Mater. Renew. Sustain. Energy 2014, 3, 1–8. [Google Scholar] [CrossRef][Green Version]
- Choi, H.S.; Park, C.R. Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor. J. Power Sources 2014, 259, 1–14. [Google Scholar] [CrossRef]
- Cericola, D.; Kotz, R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochim. Acta 2012, 72, 1–17. [Google Scholar] [CrossRef]
- Yang, J.J.; Kim, Y.R.; Jeong, M.G.; Yuk, Y.J.; Kim, H.J.; Park, S.G. Synthesis and electrochemical characteristics of spherical Li4Ti5O12/CNT composite materials for hybrid capacitors. J. Electrochem. Sci. Technol. 2015, 6, 59–64. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, J.; Qin, F.; Yuan, J.; Zhang, K.; Li, J.; Zhu, D.M.; Qin, L.C. Hybrid lithium-ion capacitors with asymmetric graphene electrodes. J. Mater. Chem. 2017, 5, 13601–13609. [Google Scholar] [CrossRef]
- Brisse, A.L.; Stevens, P.; Toussaint, G.; Crosnier, O.; Brousse, T. Ni(OH)2 and NiO based composites: Battery type electrode materials for hybrid supercapacitor devices. Materials 2018, 11, 1178. [Google Scholar] [CrossRef][Green Version]
- Krause, A.; Kossyrev, P.; Oljaca, M.; Passerini, S.; Winter, M.; Balducci, A. Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black. J. Power Sources 2011, 196, 8836–8842. [Google Scholar] [CrossRef]
- Lamb, J.J.; Burheim, O.S. lithium-ion capacitors: A review of design and active materials. Energies 2021, 14, 979. [Google Scholar] [CrossRef]
- Yang, W.; Ni, M.; Ren, X.; Tian, Y.; Li, N.; Su, Y.; Zhang, X. Graphene in Supercapacitor Applications. Curr. Opin. Colloid Interface Sci. 2015, 20, 416–428. [Google Scholar] [CrossRef]
- Li, Z.; Gadipelli, S.; Li, H.; Howard, C.A.; Brett, D.J.; Shearing, P.R.; Guo, Z.; Parkin, I.P.; Li, F. Tunning the interlayer pacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 2020, 5, 160–168. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Marconcini, P.; Macucci, M. The k.p method and its applications to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation. Riv. Nuovo Cimento 2011, 34, 489–584. [Google Scholar]
- Sajjad, M.; Wen, L. Covalent organic frameworks based nano materials: Design, synthesis, and current status for supercapacitor applications: A review. J. Energy Storage 2021, 39, 102618. [Google Scholar] [CrossRef]
- Ariyarathna, T.; Kularatna, N.; Gunawardane, K.; Jayananda, D.; Steyn-Ross, D.A. Development of Supercapacitor Technology and its potential impact on new Power Converter Techniques for renewable Energy. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 267–276. [Google Scholar] [CrossRef]
- Harrop, P.; Gonzalez, F.; Armstrong, J.; Greaves, K. Supercapacitor/Ultracapacitor Strategies and Emerging Applications 2013–2025; IDTechEx: Cambridge, UK, 2013. [Google Scholar]
- Jing, W.; Lai, C.H.; Wong, S.H.W.; Wong, M.L.D. Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: A review. IET Renew. Power Gener. 2017, 11, 461–469. [Google Scholar] [CrossRef]
- Kim, Y.; Koh, J.; Xie, Q.; Wang, Y.; Chang, N.; Pedram, M. A scalable and felxible hybrid energy storage system design and implementation. J. Power Sources 2014, 255, 410–422. [Google Scholar] [CrossRef]
- Hybrid Lamborghinis: Supercapacitor Technology Patented with MIT. Available online: https://www.lamborghini.com/en-en/news/hybrid-lamborghinis-supercapacitor-technology-patented-mit (accessed on 6 October 2022).
- Dinca, M.; Dou, J.; Borysiewicz, M.; Parenti, R.; Banda, H. Metal-Organic Frameworks for Supercapacitor Electrodes. U.S. Patent 11424083, 23 August 2022. [Google Scholar]
- Tesla Model S. Available online: https://www.tesla.com/sites/default/files/tesla-model-s.pdf (accessed on 10 November 2022).
- Kularatna, N.; Jayananda, D. Supercapacitor-Based Long Time-Constant Circuits. IEEE Ind. Electron. Mag. 2020, 14, 40–56. [Google Scholar] [CrossRef]
- Henze, V. Battery Pack Prices Fall to an Average of $132/kWh, But Rising Commodity Prices Start to Bite. Available online: https://about.bnef.com/blog/battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/ (accessed on 6 May 2022).
- Skelgrid Ultracapacitor System. Available online: https://www.skeletontech.com/skelgrid-ultracapacitor-system (accessed on 6 May 2022).
- New Ultracapacitor-System in the Isle of Eigg. Available online: https://www.offgridenergyindependence.com/articles/15818/new-ultracapacitor-system-on-the-isle-of-eigg (accessed on 6 May 2022).
Item | Supercapacitors | Batteries |
---|---|---|
Charge time | 1–60 s | 1–5 h |
Discharge time | 0.1–30 min | 0.3–3 h |
Energy density, Wh/kg | 1–20 | 20–100 |
Power density, W/kg | 2000–10,000 | 50–200 |
Cycle time | 50,000–1,000,000 | 500–2000 |
Charge/discharge efficiency | Near 100% | 70–85% |
Internal resistance or ESR | Fractional mΩ to several mΩ (Constant with DoD) | From 50 mΩ to few Ω (increases with DoD) |
Parameter | EDLCs | Hybrid SCs | Battery Capacitors |
---|---|---|---|
Energy Density, Wh/L | 5–8 | 10–14 | 50–120 |
Power Density, W/L | 8000 | 2500–4000 | 1600–3200 |
Cycle Time, cycles | 1,000,000 | 40,000–50,000 | 15,000–20,000 |
Rated Voltage, V | 2.7–3.0 | 2.7-2.8 | 2.7 |
Capacitance, F | 1–5000 | 200–7500 | 1000–100,000 |
Energy Storage | Li-Ion Battery | Lead–Acid Battery | EDLC Supercapacitor | Hybrid Supercapacitor | Battery Capacitors |
---|---|---|---|---|---|
Specific Power (W/kg) | 3000 | 250 | 14,000 | 5000 | 4000 |
Specific Energy (Wh/kg) | 100–200 | 30–100 | 1–10 | 7–12 | 20–71.4 |
Life Cycle | 250–1000 | 500–1000 | 500,000–1,000,000 | 40,000–50,000 | 15,000–20,000 |
Temperature Range | 0 to 60 °C | 0 to 40 °C | −40 to 60 °C | −20 to 60 °C | −20 to 60 °C |
Type | Capacity | Cost per Unit [USD] | Wh/kg | USD/kWh | Life Cycles | USD/kWh per 1000 Cycles | ||
---|---|---|---|---|---|---|---|---|
[F] | [mAh] | [Wh] | ||||||
EDLC | 3000 | 2200 | 3.04 | 51.85 | 5.7 | 17,055.92 | 1,000,000 | 0.02 |
Battery capacitor (High power type) | 40,000 | 12,000 | 26.28 | 88.89 | 37.0 | 3382.42 | 20,000 | 169.12 |
Battery capacitor (High energy type) | 3300 | 1100 | 2.17 | 7.41 | 40.1 | 3414.75 | 15,000 | 227.65 |
Battery capacitor (High energy type) | 70,000 | 19,000 | 45.99 | 98.77 | 56.7 | 2147.64 | 15,000 | 143.18 |
Battery capacitor (High energy type) | 100,000 | 28,000 | 65.69 | 104.94 | 71.4 | 1567.50 | 15,000 | 104.5 |
Li-ion batteries (Data collected from industry) | 132 [51] | 1000 | 132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirimanne, D.C.U.; Kularatna, N.; Arawwawala, N. Electrical Performance of Current Commercial Supercapacitors and Their Future Applications. Electronics 2023, 12, 2465. https://doi.org/10.3390/electronics12112465
Sirimanne DCU, Kularatna N, Arawwawala N. Electrical Performance of Current Commercial Supercapacitors and Their Future Applications. Electronics. 2023; 12(11):2465. https://doi.org/10.3390/electronics12112465
Chicago/Turabian StyleSirimanne, Don Charles Uvindra, Nihal Kularatna, and Nadee Arawwawala. 2023. "Electrical Performance of Current Commercial Supercapacitors and Their Future Applications" Electronics 12, no. 11: 2465. https://doi.org/10.3390/electronics12112465
APA StyleSirimanne, D. C. U., Kularatna, N., & Arawwawala, N. (2023). Electrical Performance of Current Commercial Supercapacitors and Their Future Applications. Electronics, 12(11), 2465. https://doi.org/10.3390/electronics12112465