A Poisson Process Generator Based on Multiple Thermal Noise Amplifiers for Parallel Stochastic Simulation of Biochemical Reactions
Abstract
:1. Introduction
2. Proposed Poisson Process Generator
2.1. Operation Principle
2.2. Effect of Increasing N
3. Stochastic Multiplication Using AND Gate
4. Fundamental Reaction Building Block
5. Stochastic Simulation Results of Biochemical Reactions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, T.; Chen, L.; Aihara, K. Molecular communication through stochastic synchronization induced by extracellular fluctuations. Phys. Rev. Lett. 2005, 95, 178103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 1998, 70, 223. [Google Scholar] [CrossRef]
- Spencer, S.L.; Gaudet, S.; Albeck, J.G.; Burke, J.M.; Sorger, P.K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009, 459, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Steuer, R. Effects of stochasticity in models of the cell cycle: From quantized cycle times to noise-induced oscillations. J. Theor. Biol. 2004, 228, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Kepler, T.B.; Elston, T.C. Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations. Biophys. J. 2001, 81, 3116–3136. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Slepoy, A.; Thompson, A.P.; Plimpton, S.J. A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 2008, 128, 205101. [Google Scholar] [CrossRef]
- Ramaswamy, R.; González-Segredo, N.; Sbalzarini, I.F. A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks. J. Chem. Phys. 2009, 130, 244104. [Google Scholar] [CrossRef] [Green Version]
- Gibson, M.A.; Bruck, J. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 2000, 104, 1876–1889. [Google Scholar] [CrossRef]
- Cao, Y.; Petzold, L.R.; Rathinam, M.; Gillespie, D.T. The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. J. Chem. Phys. 2004, 121, 12169–12178. [Google Scholar] [CrossRef] [Green Version]
- Shaw, D.E.; Deneroff, M.M.; Dror, R.O.; Kuskin, J.S.; Larson, R.H.; Salmon, J.K.; Young, C.; Batson, B.; Bowers, K.J.; Chao, J.C.; et al. Anton, a special-purpose machine for molecular dynamics simulation. ACM SIGARCH Comput. Archit. News 2007, 35, 1–12. [Google Scholar] [CrossRef]
- Chandran, D.; Bergmann, F.T.; Sauro, H.M. TinkerCell: Modular CAD tool for synthetic biology. J. Biol. Eng. 2009, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Petzold, L. Efficient parallelization of the stochastic simulation algorithm for chemically reacting systems on the graphics processing unit. Int. J. High Perform. Comput. Appl. 2010, 24, 107–116. [Google Scholar]
- Salwinski, L.; Eisenberg, D. In silico simulation of biological network dynamics. Nat. Biotechnol. 2004, 22, 1017–1019. [Google Scholar] [CrossRef]
- Woo, S.S.; Kim, J.; Sarpeshkar, R. A cytomorphic chip for quantitative modeling of fundamental bio-molecular circuits. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Woo, S.S.; Sarpeshkar, R. Fast and precise emulation of stochastic biochemical reaction networks with amplified thermal noise in silicon chips. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.S.; Kim, J.; Sarpeshkar, R. A digitally programmable cytomorphic chip for simulation of arbitrary biochemical reaction networks. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Sarpeshkar, R. Cytomorphic electronics: Cell-inspired electronics for systems and synthetic biology. In Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems; Cambridge University Press: Cambridge, UK, 2010; pp. 753–786. [Google Scholar]
- Hanna, H.A.; Danial, L.; Kvatinsky, S.; Daniel, R. Cytomorphic electronics with memristors for modeling fundamental genetic circuits. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Houssein, A.; Papadimitriou, K.I.; Drakakis, E.M. A 1.26 µW Cytomimetic IC Emulating Complex Nonlinear Mammalian Cell Cycle Dynamics: Synthesis, Simulation and Proof-of-Concept Measured Results. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 543–554. [Google Scholar] [CrossRef]
- Medley, J.K.; Teo, J.; Woo, S.S.; Hellerstein, J.; Sarpeshkar, R.; Sauro, H.M. A compiler for biological networks on silicon chips. PLoS Comput. Biol. 2020, 16, e1008063. [Google Scholar] [CrossRef]
- Teo, J.J.; Kim, J.; Woo, S.S.; Sarpeshkar, R. Bio-molecular circuit design with electronic circuit software and cytomorphic chips. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019. [Google Scholar]
- Beahm, D.R.; Deng, Y.J.; Riley, T.G.; Sarpeshkar, R. Cytomorphic Electronic Systems: A review and perspective. IEEE Nanotechnol. Mag. 2021, 15, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sarpeshkar, R.; Mandal, S. A Compact and Power-Efficient Noise Generator for Stochastic Simulations. In Proceedings of the 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, 9–11 August 2021. [Google Scholar]
- Hassanli, K.; Sayedi, S.M.; Dehghani, R.; Jalili, A.; Wikner, J.J. A low power wide tuning-range CMOS current-controlled oscillator. Integration 2016, 55, 57–66. [Google Scholar] [CrossRef]
- Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, N.; Xu, L.; Mendes, P.; Kummer, U. COPASI- a complex pathway simulator. Bioinformatics 2006, 22, 3067–3074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, C.J.; Pienaar, I.S.; Elson, J.L.; Kirkwood, T.B. Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: A stochastic modelling approach. Mol. Neurodegener. 2012, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, Y.; Mun, K.; Jeong, Y.; Kwak, J.Y.; Park, J.; Lee, S.; Kim, I.; Park, J.-K.; Hwang, G.-W.; Kim, J. A Poisson Process Generator Based on Multiple Thermal Noise Amplifiers for Parallel Stochastic Simulation of Biochemical Reactions. Electronics 2022, 11, 1039. https://doi.org/10.3390/electronics11071039
Jo Y, Mun K, Jeong Y, Kwak JY, Park J, Lee S, Kim I, Park J-K, Hwang G-W, Kim J. A Poisson Process Generator Based on Multiple Thermal Noise Amplifiers for Parallel Stochastic Simulation of Biochemical Reactions. Electronics. 2022; 11(7):1039. https://doi.org/10.3390/electronics11071039
Chicago/Turabian StyleJo, Yeji, Kyusik Mun, Yeonjoo Jeong, Joon Young Kwak, Jongkil Park, Suyoun Lee, Inho Kim, Jong-Keuk Park, Gyu-Weon Hwang, and Jaewook Kim. 2022. "A Poisson Process Generator Based on Multiple Thermal Noise Amplifiers for Parallel Stochastic Simulation of Biochemical Reactions" Electronics 11, no. 7: 1039. https://doi.org/10.3390/electronics11071039
APA StyleJo, Y., Mun, K., Jeong, Y., Kwak, J. Y., Park, J., Lee, S., Kim, I., Park, J.-K., Hwang, G.-W., & Kim, J. (2022). A Poisson Process Generator Based on Multiple Thermal Noise Amplifiers for Parallel Stochastic Simulation of Biochemical Reactions. Electronics, 11(7), 1039. https://doi.org/10.3390/electronics11071039