Optimized Seam-Driven Image Stitching Method Based on Scene Depth Information
Abstract
:1. Introduction
2. Seam-Driven Image Stitching Based on Depth, Color, and Texture Information
2.1. Motivation
2.2. The Proposed Method
3. Experimental Results and Analysis
3.1. Comparison with Spatially Varying Warping Methods
3.2. Comparison with Seam-Driven Methods
3.3. Objective Quality Evaluation
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Lai, Y.-K.; Zhang, F.-L. Content-preserving image stitching with piecewise rectangular boundary constraints. IEEE Trans. Visual. Comput. Graph. 2021, 27, 3198–3212. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, M.J.R.; Alves, T.d.R.; Honório, L.M.; Junior, I.C.S.; Vidal, V.F. Performance Evaluation of Bundle Adjustment with Population Based Optimization Algorithms Applied to Panoramic Image Stitching. Sensors 2021, 21, 5054. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, M.; Zhang, Z.; Yang, S.; Ning, J. Robust UAV thermal infrared remote sensing images stitching via overlap-prior-based global similarity prior model. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2021, 14, 270–282. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Shen, S.; Jiang, X.; Chen, W.; Li, Z. Research on panoramic stitching algorithm of lateral cranial sequence images in dental multifunctional cone beam computed tomography. Sensors 2021, 21, 2200. [Google Scholar] [CrossRef] [PubMed]
- Guy, S.; Haberbusch, J.-L.; Promayon, E.; Mancini, S.; Voros, S. Qualitative comparison of image stitching algorithms for multi-camera systems in laparoscopy. J. Imaging 2022, 8, 52. [Google Scholar] [CrossRef]
- Muñoz, L.; Díaz, C.; Orduna, M.; Ronda, J.I.; Pérez, P.; Benito, I.; García, N. Methodology for fine-grained monitoring of the quality perceived by users on 360VR contents. Digit. Signal Process. 2020, 100, 10–27. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Jackson, W.; Zhang, D.; Mcdonald, L.; Macleod, C. A novel centralization method for pipe image stitching. IEEE Sens. J. 2021, 21, 11889–11898. [Google Scholar] [CrossRef]
- Brown, M.; Lowe, D.G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 2007, 74, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Kim, S.J.; Brown, M.S. Constructing Image Panoramas Using Dual-Homography Warping. In Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Colorado, CO, USA, 20–25 June 2011; pp. 49–56. [Google Scholar]
- Zaragoza, J.; Chin, T.; Tran, Q.; Brown, M.S.; Suter, D. As-projective-as-possible image stitching with moving DLT. IEEE Trans. Patern Anal. Mach. Intell. 2014, 36, 1285–1298. [Google Scholar]
- Lin, C.C.; Pankanti, S.U.; Ramamurthy, K.N.; Aravkin, A.Y. Adaptive As-Natural-As-Possible Image Stitching. In Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1155–1163. [Google Scholar]
- Li, J.; Wang, Z.; Lai, S.; Zhai, Y.; Zhang, M. Parallax-tolerant image stitching based on robust elastic warping. IEEE Trans. Multimed. 2018, 20, 1672–1687. [Google Scholar] [CrossRef]
- Liao, T.; Li, N. Single-perspective warps in natural image stitching. IEEE Trans. Image Process. 2020, 29, 724–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Wang, P.; Cao, Q.; Ding, C.; Luo, T. Misalignment-eliminated warping image stitching method with grid-based motion statistics matching. Multimed. Tools Appl. 2022, 81, 10723–10742. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Chin, T.J.; Brown, M.S. Seam-Driven Image Stitching. In Proceedings of the 2013 Eurographics, Girona, Spain, 6–10 May 2013; pp. 45–48. [Google Scholar]
- Huang, C.; Lin, S.; Chen, J. Efficient image stitching of continuous image sequence with image and seam selections. IEEE Sens. J. 2015, 15, 5910–5918. [Google Scholar] [CrossRef]
- Lin, K.; Jiang, N.L.F.; Cheong, M.D.; Lu, J. Seagull: Seam-Guided Local Alignment for Parallax-Tolerant Image Stitching. In Proceedings of the 2016 European Conference on Computer Vision—(ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 370–385. [Google Scholar]
- Li, N.; Liao, T.; Wang, C. Perception-based seam cutting for image stitching. Signal Image Video Process. 2018, 12, 967–974. [Google Scholar] [CrossRef]
- Herrmann, C.; Wang, C.; Bowen, R.S.; Keyder, E.; Zabih, R. Object-Centered Image Stitching. In Proceedings of the 2018 European Conference on Computer Vision—(ECCV), Munich, Germany, 10–13 September 2018; pp. 846–861. [Google Scholar]
- Wang, Z.; Yang, Z. Seam elimination based on Curvelet for image stitching. Soft Comput. 2019, 23, 5065–5080. [Google Scholar] [CrossRef]
- Agarwala, A.; Dontcheva, M.; Agrawala, M.; Drucker, S.; Colburn, A.; Curless, B.; Salesin, D.; Cohen, M. Interactive digital photomontage. ACM Trans. Graph. 2004, 23, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Patern Anal. Mach. Intell. 2004, 26, 1124–1137. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Hong, J. Quantitative assessment method of image stitching performance based on estimation of planar parallax. IEEE Access 2021, 9, 6152–6163. [Google Scholar] [CrossRef]
- Li, L.; Yao, J.; Xie, R.; Xia, M.; Xiang, B. Superpixel-Based Optimal Seamline Detection Via Graph Cuts for Panoramic Images. In Proceedings of the 2016 IEEE International Conference on Information & Automation, Ningbo, China, 1–3 August 2016; pp. 1484–1489. [Google Scholar]
- Seyed Mahdi Hosseini, M.; Sebastian, D.; Long, M.; Sylvain, P.; Yagız, A. Boosting Monocular Depth Estimation Models to High-Resolution Via Content-Adaptive Multi-Resolution Merging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, WA, USA, 19–25 June 2021; pp. 9685–9694. [Google Scholar]
- Xu, J.; Hou, Y.; Ren, D.; Liu, L.; Zhu, F.; Yu, M.; Wang, H.; Shao, L. STAR: A Structure and texture aware retinex model. IEEE Trans. Image Process. 2020, 29, 5022–5037. [Google Scholar] [CrossRef] [Green Version]
- Pérez, P.; Michel, G.; Andrew, B. Poisson image editing. ACM Trans. Graph. 2003, 22, 313–318. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, F. Parallax-Tolerant Image Stitching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3262–3269. [Google Scholar]
- HaCohen, Y.; Shechtman, E.; Goldman, D.B.; Lischinski, D. Non-rigid dense correspondence with applications for image enhancement. ACM Trans. Graph. 2011, 30, 70. [Google Scholar] [CrossRef]
Scene No. | 01. | 02. | 03. | 04. | 05. | 06. | 07. | 08. | 09. | 10. | 11. | 12. |
Perceptual [18] | 0.121 | 0.356 | 0.338 | 0.378 | 0.253 | 0.445 | 0.290 | 0.376 | 0.354 | 0.360 | 0.418 | 0.351 |
Traditional | 0.236 | 0.527 | 0.366 | 0.435 | 0.332 | 0.433 | 0.352 | 0.320 | 0.426 | 0.353 | 0.409 | 0.318 |
Proposed | 0.082 | 0.308 | 0.346 | 0.281 | 0.263 | 0.421 | 0.258 | 0.273 | 0.352 | 0.345 | 0.321 | 0.239 |
Scene No. | 13. | 14. | 15. | 16. | 17. | 18. | 19. | 20. | 21. | 22. | 23. | 24. |
Perceptual [18] | 0.318 | 0.232 | 0.401 | 0.360 | 0.330 | 0.383 | 0.248 | 0.294 | 0.341 | 0.306 | 0.397 | 0.212 |
Traditional | 0.305 | 0.262 | 0.379 | 0.387 | 0.355 | 0.418 | 0.259 | 0.434 | 0.445 | 0.287 | 0.348 | 0.312 |
Proposed | 0.232 | 0.213 | 0.371 | 0.345 | 0.287 | 0.389 | 0.195 | 0.308 | 0.431 | 0.251 | 0.334 | 0.276 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yu, M.; Song, Y. Optimized Seam-Driven Image Stitching Method Based on Scene Depth Information. Electronics 2022, 11, 1876. https://doi.org/10.3390/electronics11121876
Chen X, Yu M, Song Y. Optimized Seam-Driven Image Stitching Method Based on Scene Depth Information. Electronics. 2022; 11(12):1876. https://doi.org/10.3390/electronics11121876
Chicago/Turabian StyleChen, Xin, Mei Yu, and Yang Song. 2022. "Optimized Seam-Driven Image Stitching Method Based on Scene Depth Information" Electronics 11, no. 12: 1876. https://doi.org/10.3390/electronics11121876
APA StyleChen, X., Yu, M., & Song, Y. (2022). Optimized Seam-Driven Image Stitching Method Based on Scene Depth Information. Electronics, 11(12), 1876. https://doi.org/10.3390/electronics11121876