Pole Feature Extraction of HF Radar Targets for the Large Complex Ship Based on SPSO and ARMA Model Algorithm
Abstract
:1. Introduction
2. Methods
2.1. Preprocessing of the ARMA Model Algorithm
2.2. The Special Particle Swarm Optimization Algorithm (SPSO)
2.3. Calibrating Multidirectional Pole Positions
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moffatt, D.; Young, J.; Ksienski, A.; Lin, H.; Rhoads, C. Transient response characteristics in identification and imaging. IEEE Trans. Antennas Propag. 1981, 29, 192–205. [Google Scholar] [CrossRef]
- Yang, J.; Sarkar, T.K. Interpolation/extrapolation of radar cross-section (RCS) data in the frequency domain using the Cauchy method. IEEE Trans. Antennas Propag. 2007, 55, 2844–2851. [Google Scholar] [CrossRef]
- Guo, L.; Lin, Y.; Xue, Z.; Zhang, H. A Two Steps Fast Monostatic Radar Cross Section Simulation Scheme Based on Adaptive Cross Approximation and Singular Value Decomposition. In Proceedings of the IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Xi’an, China, 24–27 October 2017; pp. 369–373. [Google Scholar]
- Bennett, C.L.; Toomey, J.P. Target Classification with Multiple Frequency Illumination. IEEE Trans. Antennas Propag. 1981, 29, 352–358. [Google Scholar] [CrossRef]
- Li, J.; Jen, L. Extraction of natural frequencies of radar target by L/sup 2/ space optimisation. Electron. Lett. 1994, 30, 2072–2073. [Google Scholar] [CrossRef]
- Trueman, C.W.; Kubina, S.J.; Mishra, S.R.; Larose, C.L. RCS of Small Aircraft at HF Frequencies, Proceedings of the Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 1994], Ottawa, ON, Canada, 3–5 August 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 151–157.
- David, A.; Brousseau, C.; Bourdillon, A. Simulations and measurements of a radar cross section of a Boeing 747–200 in the 20–60 MHz frequency band. Radio Sci 2003, 38, 1–3. [Google Scholar] [CrossRef]
- Chan, Y.T.; Ho, K.C.; Wong, S.K. Aircraft identification from RCS measurement using an orthogonal transform. IEE Proc.—Radar Sonar Navig. 2002, 147, 93–102. [Google Scholar] [CrossRef]
- Barès, C.; Brousseau, C.; Bourdillon, A. in A Multifrequency HF—VHF Radar System for Aircraft identification. In Proceedings of the IEEE International Radar Conference, Arlington, VA, USA, 9–12 May 2006. [Google Scholar]
- Gustavsen, B.; Semlyen, A. A robust approach for system identification in the frequency domain. Power Deliv. IEEE Trans. 2004, 19, 1167–1173. [Google Scholar] [CrossRef] [Green Version]
- Deschrijver, D.; Haegeman, B.; Dhaene, T. Orthonormal Vector Fitting: A Robust Macromodeling Tool for Rational Approximation of Frequency Domain Responses. IEEE Trans. Adv. Packag. 2007, 30, 216–225. [Google Scholar] [CrossRef]
- Kennaugh, E.; Moffatt, D.L.; Wang, N. The K-pulse and response waveforms for nonuniform transmission lines. Antennas Propag. IEEE Trans. 1986, 34, 78–83. [Google Scholar] [CrossRef]
- Fiscante, N.; Addabbo, P.; Clemente, C.; Biondi, F.; Giunta, G.; Orlando, D. A Track-Before-Detect Strategy Based on Sparse Data Processing for Air Surveillance Radar Applications. Remote Sens. 2021, 13, 662. [Google Scholar] [CrossRef]
- Wang, R.; Tian, J.; Wu, F.; Zhang, Z.; Liu, H. PSO/GA Combined with Charge Simulation Method for the Electric Field Under Transmission Lines in 3D Calculation Model. Electronics 2019, 8, 1140. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.A. Singularity expansion representations of fields and currents in transient scattering. IEEE Trans. Antennas Propag. 1984, 32, 466–473. [Google Scholar] [CrossRef]
- Anand, B.; Aakash, I.; Varrun, V.; Reddy, M.K.; Sathyasai, T.; Devi, M.N. Improvisation of Particle Swarm Optimization Algorithm. In Proceedings of the 2014 International Conference on Signal Processing and Integrated Networks (SPIN), Delhi, India, 20–21 February 2014; pp. 20–24. [Google Scholar]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Kumaresan, R.; Tufts, D.W. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans. Acoust. Speech Signal Process. 1982, 30, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Jiao, D.; Xu, S.J.; Wu, X.L. New method for natural frequency extraction. Prog. Natual Sci. 1999, 9, 545–552. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Gao, H.; Ren, F. Pole Feature Extraction of HF Radar Targets for the Large Complex Ship Based on SPSO and ARMA Model Algorithm. Electronics 2022, 11, 1644. https://doi.org/10.3390/electronics11101644
Zhou S, Gao H, Ren F. Pole Feature Extraction of HF Radar Targets for the Large Complex Ship Based on SPSO and ARMA Model Algorithm. Electronics. 2022; 11(10):1644. https://doi.org/10.3390/electronics11101644
Chicago/Turabian StyleZhou, Sang, Huotao Gao, and Fangyu Ren. 2022. "Pole Feature Extraction of HF Radar Targets for the Large Complex Ship Based on SPSO and ARMA Model Algorithm" Electronics 11, no. 10: 1644. https://doi.org/10.3390/electronics11101644
APA StyleZhou, S., Gao, H., & Ren, F. (2022). Pole Feature Extraction of HF Radar Targets for the Large Complex Ship Based on SPSO and ARMA Model Algorithm. Electronics, 11(10), 1644. https://doi.org/10.3390/electronics11101644