Reconfigurable Multiband Operation for Wireless Devices Embedding Antenna Boosters
Abstract
:1. Introduction
2. Antenna Booster Technology
3. Digitally Tunable Capacitors for Antenna Boosters
3.1. Digitally Tunable Capacitors
3.2. A Reconfigurable Matching Network with a DTC
4. RF Switches for Antenna Boosters
4.1. SPNT Switch
4.2. Multiband Operation with an SP8T Switch
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anguera, J.; Andújar, A.; Huynh, M.C.; Orlenius, C.; Picher, C.; Puente, C. Advances in Antenna Technology for Wireless Handheld Devices. Int. J. Antennas Propag. 2013, 2013, 838364. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Wang, H.; Hao, Y. Internal Hexa-Band Folded Monopole/Dipole/Loop Antenna With Four Resonances for Mobile Device. IEEE Trans. Antennas Propag. 2012, 60, 2880–2885. [Google Scholar] [CrossRef]
- Kim, B.-N.; Park, S.-O.; Lee, J.-H.; Oh, J.-K.; Lee, K.-J.; Koo, G.-Y. Hepta-band planar inverted-F antenna with novel feed structure for wireless terminals. In Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 9–15 June 2007; pp. 1257–1260. [Google Scholar]
- Ban, Y.-L.; Qiang, Y.-F.; Chen, Z.; Kang, K.; Li, J.L.-W. Low-Profile Narrow-Frame Antenna for Seven-Band WWAN/LTE Smartphone Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 463–466. [Google Scholar] [CrossRef]
- Chen, Z.X.; Ban, Y.L.; Chen, Z.; Kang, K.; Li, J.L.W. Two-strip narrow-frame monopole antenna with a capacitor loaded for hepta-band smartphone applications. Prog. Electromagn. Res. 2014, 145, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Ban, Y.-L.; Liu, C.-L.; Li, J.L.-W.; Li, R. Small-Size Wideband Monopole With Distributed Inductive Strip for Seven-Band WWAN/LTE Mobile Phone. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 7–10. [Google Scholar] [CrossRef]
- Deng, C.; Li, Y.; Zhang, Z.; Feng, Z. A Novel Low-Profile Hepta-Band Handset Antenna Using Modes Controlling Method. IEEE Trans. Antennas Propag. 2014, 63, 799–804. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z. Wideband Monopole Antenna With Less Nonground Portion For Octa-Band WWAN/LTE Mobile Phones. IEEE Trans. Antennas Propag. 2016, 64, 383–388. [Google Scholar] [CrossRef]
- Huang, D.; Du, Z.; Wang, Y. An Octa-band Monopole Antenna With a Small Nonground Portion Height for LTE/WLAN Mobile Phones. IEEE Trans. Antennas Propag. 2016, 65, 878–882. [Google Scholar] [CrossRef]
- Wu, D.; Cheung, S.W.; Yuk, T.I. A Compact and Low-Profile Loop Antenna With Multiband Operation for Ultra-Thin Smartphones. IEEE Trans. Antennas Propag. 2015, 63, 2745–2750. [Google Scholar] [CrossRef]
- Xu, Z.-Q.; Zhou, Q.-Q.; Ban, Y.-L.; Ang, S.S. Hepta-Band Coupled-Fed Loop Antenna For LTE/WWAN Unbroken Metal-Rimmed Smartphone Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 311–314. [Google Scholar] [CrossRef]
- Anguera, J.; Andújar, A.; Puente, C. Antenna-Less Wireless: A Marriage Between Antenna and Microwave Engineering. Microw. J. 2017, 60, 22–36. [Google Scholar]
- Anguera, J.; Andújar, A.; Puente, C.; Mumbrú, J. Antennaless Wireless Device Capable of Operation in Multiple Frequency Regions. U.S. Patent 8,736,497, 4 August 2008. [Google Scholar]
- Andújar, A.; Anguera, J.; Puente, C. Ground Plane Boosters as a Compact Antenna Technology for Wireless Handheld Devices. IEEE Trans. Antennas Propag. 2011, 59, 1668–1677. [Google Scholar] [CrossRef]
- Anguera, J.; Andújar, A.; Puente, C. Wireless Handheld Devices, Radiation Systems and Manufacturing Methods. Patent CN 104508905 (B), 19 July 2013. [Google Scholar]
- Anguera, J.; Picher, C.; Bujalance, A.; Andújar, A. Ground plane booster antenna technology for smartphones and tablets. Microw. Opt. Technol. Lett. 2016, 58, 1289–1294. [Google Scholar] [CrossRef]
- Anguera, J.; Andújar, A.; Mestre, G.; Rahola, J.; Juntunen, J. Design of Multiband Antenna Systems for Wireless Devices Using Antenna Boosters. IEEE Microw. Mag. 2019, 20, 102–114. [Google Scholar] [CrossRef]
- De Mingo, J.; Valdovinos, A.; Crespo, A.; Navarro, D.; Garcia, P. An RF Electronically Controlled Impedance Tuning Network Design and Its Application to an Antenna Input Impedance Automatic Matching System. IEEE Trans. Microw. Theory Tech. 2004, 52, 489–497. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C.; Pan, H.K.; Fathy, A.E.; Nair, V.K. Frequency-Reconfigurable Antennas for Multiradio Wireless Platforms. IEEE Microw. Mag. 2009, 10, 66–83. [Google Scholar] [CrossRef]
- Chi, Y.-W.; Wong, K.-L. Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone. IEEE Trans. Antennas Propag. 2009, 57, 2541–2547. [Google Scholar] [CrossRef]
- Iyer, V.; Makarov, S.N.; Harty, D.D.; Nekoogar, F.; Ludwig, R. A Lumped Circuit for Wideband Impedance Matching of a Non-Resonant, Short Dipole or Monopole Antenna. IEEE Trans. Antennas Propag. 2010, 58, 18–26. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Zheng, J.; Feng, Z.; Iskander, M.F. A Compact Hepta-Band Loop-Inverted F Reconfigurable Antenna for Mobile Phone. IEEE Trans. Antennas Propag. 2012, 60, 389–392. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.-M.; Liu, G.-F.; Gong, S.-X. Heptaband Inverted-F Antenna for Metal-Rimmed Mobile Phone Applications. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 996–999. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Gao, S.; Zhou, H.; Huang, Y.; Xu, Q.; Cheng, Y. A Compact and Low-Profile Loop Antenna With Six Resonant Modes for LTE Smartphone. IEEE Trans. Antennas Propag. 2016, 64, 3743–3751. [Google Scholar] [CrossRef] [Green Version]
- Asadallah, F.A.; Costantine, J.; Tawk, Y. A Multiband Compact Reconfigurable PIFA Based on Nested Slots. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 331–334. [Google Scholar] [CrossRef]
- Chen, Y.; Martens, R.; Valkonen, R.; Manteuffel, D. Evaluation of adaptive impedance tuning for reducing the form factor of handset antenas. IEEE Trans. Antennas Propag. 2015, 63, 703–710. [Google Scholar] [CrossRef]
- Hoarau, C.; Corrao, N.; Arnould, J.D.; Ferrari, P.; Xavier, P. Complete design and measurement methodology for a tunable RF impedance-matching network. IEEE Trans. Microw. Theory Tech. 2008, 56, 2620–2627. [Google Scholar] [CrossRef]
- Chen, Y.; Manteuffel, D. A Tunable Decoupling and Matching Concept for Compact Mobile Terminal Antennas. IEEE Trans. Antennas Propag. 2017, 65, 1570–1578. [Google Scholar] [CrossRef]
- Ida, I.; Takada, J.-I.; Toda, T.; Oishi, Y. An adaptive impedance matching system and its application to mobile antennas. In Proceedings of the 2004 IEEE Region 10 Conference TENCON 2004, Chiang Mai, Thailand, 21–24 November 2004; pp. 543–546. [Google Scholar]
- Bahramzy, P.; Olesen, P.; Madsen, P.; Bojer, J.; del Barrio, S.C.; Tatomirescu, A.; Bundgaard, P.; Iii, A.S.M.; Pedersen, G.F. A Tunable RF Front-End With Narrowband Antennas for Mobile Devices. IEEE Trans. Microw. Theory Tech. 2015, 63, 3300–3310. [Google Scholar] [CrossRef]
- Anguera, J.; Toporcer, N.; Andújar, A. Slim Bar Boosters for Electronic Devices. U.S. Patent 9,960,478, 24 July 2014. [Google Scholar]
- Andújar, A.; Anguera, J.; Mateos, R. Multiband non-resonant antenna system with reduced ground clearance. In Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 3086–3089. [Google Scholar]
- Fano, R.M. Theoretical Limitations on the Broad-Band Matching of Arbitrary Impedances. J. Frankl. Inst. 1950, 249, 57–83. [Google Scholar] [CrossRef] [Green Version]
- Anguera, J.; Andújar, A.; Leiva, J.; Schepens, C.; Gaddi, R.; Kahng, S. Multiband antenna operation with a non-resonant element using a reconfigurable matching network. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Tiggelman, M.P.J.; Reimann, K.; van Rijs, F.; Schmitz, J.; Hueting, R.J.E. On the Trade-Off Between Quality Factor and Tuning Ratio in Tunable High-Frequency Capacitors. IEEE Trans. Electron. Devices 2009, 56, 2128–2136. [Google Scholar] [CrossRef] [Green Version]
- Anguera, J.; Andújar, A. Wireless Device. U.S. Patent 10,122,403, 12 January 2016. [Google Scholar]
- Wang, D.; Wolf, R.; Joseph, A.; Botula, A.; Rabbeni, P.; Boenke, M.; Harame, D.; Dunn, J. High performance SOI RF switches for wireless applications. In Proceedings of the 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, 1–4 November 2010; pp. 611–614. [Google Scholar]
- MIPI Alliance. MIPI White Paper: Enabling the IoT Opportunity; MIPI Alliance: Piscataway, NJ, USA, 2020. [Google Scholar]
- Anguera, J.; Andújar, A.; Leiva, J.L.; Cobo, Y.; Tønnessen, J.; Rindalsholt, E.; Brandsegg, R. Virtual Antenna™ Provides Mobile and GPS Connection in the Thingy:91 Cellular IoT Module; Fractus Antennas: Barcelona, Spain, 2020. [Google Scholar]
- Trinh, L.H.; Ferrero, F.; Lizzi, L.; Staraj, R.; Ribero, J.-M. Reconfigurable Antenna for Future Spectrum Reallocations in 5G Communications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1297–1300. [Google Scholar] [CrossRef]
- Del Barrio, S.C.; Foroozanfard, E.; Morris, A.; Pedersen, G.F. Tunable Handset Antenna: Enhancing Efficiency on TV White Spaces. IEEE Trans. Antennas Propag. 2017, 65, 2106–2111. [Google Scholar] [CrossRef]
- Mun, B.; Jung, C.; Park, M.-J.; Lee, B. A Compact Frequency-Reconfigurable Multiband LTE MIMO Antenna for Laptop Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1389–1392. [Google Scholar] [CrossRef]
- Ban, Y.-L.; Sun, S.-C.; Li, P.-P.; Li, J.L.-W.; Kang, K. Compact Eight-Band Frequency Reconfigurable Antenna for LTE/WWAN Tablet Computer Applications. IEEE Trans. Antennas Propag. 2014, 62, 471–475. [Google Scholar] [CrossRef]
- Ilvonen, J.; Valkonen, R.; Holopainen, J.; Viikari, V. Multiband Frequency Reconfigurable 4G Handset Antenna with MIMO Capability. Prog. Electromagn. Res. 2014, 148, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.-M.; Chen, I.-F.; Liu, C.-H. Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications. Int. J. Antennas Propag. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, S.; El-Ghazaly, S.; Fathy, A.; Nair, V. A Low-Profile Branched Monopole Laptop Reconfigurable Multiband Antenna for Wireless Applications. IEEE Antennas Wirel. Propag. Lett. 2008, 8, 216–219. [Google Scholar] [CrossRef]
- Hu, C.-L.; Huang, D.-L.; Kuo, H.-L.; Yang, C.-F.; Liao, C.-L.; Lin, S.-T. Compact Multibranch Inverted-F Antenna to be Embedded in a Laptop Computer for LTE/WWAN/IMT-E Applications. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 838–841. [Google Scholar] [CrossRef]
- Li, H.; Xiong, J.; Yu, Y.; He, S. A Simple Compact Reconfigurable Slot Antenna With a Very Wide Tuning Range. IEEE Trans. Antennas Propag. 2010, 58, 3725–3728. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Zheng, J.; Feng, Z. Compact Heptaband Reconfigurable Loop Antenna for Mobile Handset. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1162–1165. [Google Scholar] [CrossRef]
- Ren, Y.-J. Ceramic Based Small LTE MIMO Handset Antenna. IEEE Trans. Antennas Propag. 2012, 61, 934–938. [Google Scholar] [CrossRef]
- Dioum, I.; Diallo, A.; Farssi, S.M.; Luxey, C. A Novel Compact Dual-Band LTE Antenna-System for MIMO Operation. IEEE Trans. Antennas Propag. 2014, 62, 2291–2296. [Google Scholar] [CrossRef]
- Singh, A.; Shamblin, J.; Jones, R.; Rowson, S.; Pajona, O.; Sron, S.T.; Floc’h, J.M.; Drissi, M.; Singh, A.; Jones, R. Compact active antenna for mobile devices supporting 4G LTE. In Proceedings of the 2014 Loughborough Antennas and Propagation Conference (LAPC), Loughborough, UK, 10–11 November 2014; pp. 525–529. [Google Scholar]
- Choi, M.; Wi, H.; Mun, B.; Yoon, Y.; Lee, H.; Lee, B. A Compact Frequency Reconfigurable Antenna for LTE Mobile Handset Applications. Int. J. Antennas Propag. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Houret, T.; Lizzi, L.; Ferrero, F.; Danchesi, C.; Boudaud, S. DTC-Enabled Frequency-Tunable Inverted-F Antenna for IoT Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 307–311. [Google Scholar] [CrossRef]
12 | 13, 14 | 5 | 8 | 3 | 2 | 1 | 30 | 41 | |
---|---|---|---|---|---|---|---|---|---|
State | 699–746 | 746–798 | 824–894 | 880–960 | 1710–1880 | 1850–1990 | 1920–2170 | 2305–2360 | 2496–2690 |
S27 | 41.5 | 37.7 | 29.0 | 32.4 | 65.8 | 65.3 | 59.9 | 17.2 | 6.0 |
S08 | 19.0 | 53.6 | 54.0 | 41.5 | 71.5 | 63.8 | 59.1 | 60.4 | 26.2 |
S02 | 13.0 | 46.8 | 62.5 | 50.2 | 69.0 | 59.6 | 50.1 | 48.8 | 50.6 |
S00 | 11.5 | 44.1 | 65.4 | 53.7 | 68.4 | 58.5 | 47.7 | 42.5 | 57.2 |
Band (MHz) | 699–748 | 746–803 | 791–849 | 824–894 | 880–960 | 1575 | 1710–2170 |
Efficiency (%) | 10.0 | 12.6 | 15.7 | 18.5 | 11.2 | 39.8 | 47.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anguera, J.; Andújar, A.; Leiva, J.L.; Massó, O.; Tonnesen, J.; Rindalsholt, E.; Brandsegg, R.; Gaddi, R. Reconfigurable Multiband Operation for Wireless Devices Embedding Antenna Boosters. Electronics 2021, 10, 808. https://doi.org/10.3390/electronics10070808
Anguera J, Andújar A, Leiva JL, Massó O, Tonnesen J, Rindalsholt E, Brandsegg R, Gaddi R. Reconfigurable Multiband Operation for Wireless Devices Embedding Antenna Boosters. Electronics. 2021; 10(7):808. https://doi.org/10.3390/electronics10070808
Chicago/Turabian StyleAnguera, Jaume, Aurora Andújar, José Luis Leiva, Oriol Massó, Joakim Tonnesen, Endre Rindalsholt, Rune Brandsegg, and Roberto Gaddi. 2021. "Reconfigurable Multiband Operation for Wireless Devices Embedding Antenna Boosters" Electronics 10, no. 7: 808. https://doi.org/10.3390/electronics10070808
APA StyleAnguera, J., Andújar, A., Leiva, J. L., Massó, O., Tonnesen, J., Rindalsholt, E., Brandsegg, R., & Gaddi, R. (2021). Reconfigurable Multiband Operation for Wireless Devices Embedding Antenna Boosters. Electronics, 10(7), 808. https://doi.org/10.3390/electronics10070808