A 24 GHz Direct Conversion Receiver for FMCW Ranging Radar Based on Low Flicker Noise Mixer
Abstract
:1. Introduction
2. FMCW Principle
3. Circuit Implementations
3.1. LNA Design
3.2. Low Flicker Noise Mixer Design
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mazzanti, A.; Sosio, M.; Repossi, M.; Svelto, F. A 24 GHz Subharmonic Direct Conversion Receiver in 65 nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 58, 88–97. [Google Scholar] [CrossRef]
- Ragonese, E.; Scuderi, A.; Giammello, V.; Messina, E.; Palmisano, G. A fully integrated 24GHz UWB radar sensor for automotive applications. In Proceedings of the 2009 IEEE International Solid-State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2009; pp. 306–307. [Google Scholar] [CrossRef]
- Subramanian, V.; Zhang, T.; Boeck, G. Low Noise 24 GHz CMOS Receiver for FMCW Based Wireless Local Positioning. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 553–555. [Google Scholar] [CrossRef]
- Evans, R.J.; Farrell, P.M.; Felic, G.; Duong, H.T.; Le, H.V.; Li, J.; Li, M.; Moran, W.; Morelande, M.R.; Skafidas, E. Consumer radar: Technology and limitations. In Proceedings of the International Conference on Radar, Adelaide, Australia, 9–12 September 2013; pp. 21–26. [Google Scholar] [CrossRef]
- Park, J.; Ryu, H.; Ha, K.-W.; Kim, J.-G.; Baek, D. 76–81-GHz CMOS Transmitter With a Phase-Locked-Loop-Based Multichirp Modulator for Automotive Radar. IEEE Trans. Microw. Theory Tech. 2015, 63, 1399–1408. [Google Scholar] [CrossRef]
- Luo, T.-N.; Wu, C.-H.E.; Chen, Y.-J.E. A 77-GHz CMOS Automotive Radar Transceiver With Anti-Interference Function. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 3247–3255. [Google Scholar] [CrossRef]
- Ginsburg, B.P.; Subburaj, K.; Samala, S.; Ramasubramanian, K.; Singh, J.; Bhatara, S.; Murali, S.; Breen, D.; Moallem, M.; Dandu, K.; et al. A multimode 76-to-81GHz automotive radar transceiver with autonomous monitoring. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 158–160. [Google Scholar] [CrossRef]
- Dudek, M.; Nasr, I.; Bozsik, G.; Hamouda, M.; Kissinger, D.; Fischer, G. System Analysis of a Phased-Array Radar Applying Adaptive Beam-Control for Future Automotive Safety Applications. IEEE Trans. Veh. Technol. 2015, 64, 34–47. [Google Scholar] [CrossRef]
- Wei, P.; Diao, S.; Huang, D.; Fu, Z.; Lin, F. A K-Band Down-Conversion mixer design with integrated baluns in 65nm CMOS. In Proceedings of the Proceedings of 2012 5th Global Symposium on Millimeter-Waves, Harbin, China, 27–30 May 2012; pp. 282–285. [Google Scholar] [CrossRef]
- Ali, M.K.; Hamidian, A.; Malignaggi, A.; Arnous, M.T.; Boeck, G. Low flicker noise high linearity direct conversion mixer for K-band applications in a 90 nm CMOS technology. In Proceedings of the 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Gdańsk, Poland, 16–18 June 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Ahn, D.; Kim, D.-W.; Hong, S. A K-Band High-Gain Down-Conversion Mixer in 0.18 μm CMOS Technology. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 227–229. [Google Scholar] [CrossRef]
- Krishnaswamy, H.; Hashemi, H. A Fully Integrated 24GHz 4-Channel Phased-Array Transceiver in 0.13 μm CMOS Based on a Variable-Phase Ring Oscillator and PLL Architecture. In Proceedings of the IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, 11–15 February 2007; pp. 124–591. [Google Scholar] [CrossRef]
- Li, D.; Xia, Q.; Huang, J.; Li, J.; Chang, H.; Sun, B.; Liu, H. A 4-mW Temperature-STable 28 GHz LNA with Resistive Bias Circuit for 5G Applications. Electronics 2020, 9, 1225. [Google Scholar] [CrossRef]
- Ma, T.; Deng, W.; Chen, Z.; Wu, J.; Zheng, W.; Wang, S.; Qi, N.; Liu, Y.; Chi, B. A CMOS 76–81-GHz 2-TX 3-RX FMCW Radar Transceiver Based on Mixed-Mode PLL Chirp Generator. IEEE J. Solid-State Circuits 2019, 55, 233–248. [Google Scholar] [CrossRef]
- Huang, B.-J.; Lin, K.-Y.; Wang, H. Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology. IEEE Trans. Microw. Theory Tech. 2009, 57, 3049–3059. [Google Scholar] [CrossRef]
- Nguyen, T.-K.; Kim, C.-H.; Ihm, G.-J.; Yang, M.-S.; Lee, S.-G. CMOS Low-Noise Amplifier Design Optimization Techniques. IEEE Trans. Microw. Theory Tech. 2004, 52, 1433–1442. [Google Scholar] [CrossRef]
- Yu, Z.; Feng, J.; Guo, Y.; Li, Z. Analysis and design of a V-band low-noise amplifier in 90 nm CMOS for 60 GHz applications. IEICE Electron. Express 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Yan, N. High gain and low flicker noise down-conversion mixer applied in 24GHz FMCW radar. In Proceedings of the 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 6–10 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Lai, D.; Chen, Y.; Wang, X.; Chen, X. A CMOS Single-Differential LNA and current bleeding CMOS mixer for GPS Receivers. In Proceedings of the 2018 2010 IEEE 12th International Conference on Communication Technology, Nanjing, China, 11–14 November 2010; pp. 677–680. [Google Scholar] [CrossRef]
- Wang, H.; Jiao, C.; Zhang, L.; Zeng, D.; Yang, D.; Wang, Y.; Yu, Z. A low-power ESD-protected 24GHz receiver front-end with π-type input matching network. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 2877–2880. [Google Scholar] [CrossRef]
- Cheng, J.; Hsieh, C.; Wu, M.; Tsai, J.; Huang, T. A 0.33 V 683 uw K-Band Transformer-Based Receiver Front-End in 65 nm CMOS Technology. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 184–186. [Google Scholar] [CrossRef]
- Ding, Y.; Vehring, S.; Maurath, D.; Gerfers, F.; Boeck, G. A 24 GHz Zero-IF IQ-receiver using low-noise quadrature signal generation. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 1226–1229. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, J.; Zhang, R.; Sheng, W. Fully differential Ultra-wideband LNA-Mixer for K to Ka Band receiver in 45nm CMOS SOI technology. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 16–18. [Google Scholar] [CrossRef]
Cin | CB1–6 | Cp1 | Cp2 | C1-3 | Lin | Ls1 | Ls2 | Ld1 |
---|---|---|---|---|---|---|---|---|
1.25 pF | 2 pF | 200 fF | 550 fF | 1 pF | 720 pH | 300 pH | 270 pH | 600 pH |
Ld2 | Lm | Lg | Lp1 | Lp2 | Lp3–4 | RB1–5 | RL | RC |
450 pH | 130 pH | 150 pH | 180 pH | 300 pH | 430 pH | 1.2 kΩ | 800 Ω | 60 Ω |
This Work | [20] | [21] | [22] | [23] 1 | |
---|---|---|---|---|---|
Technology | 90 nm SOI | 0.13 um CMOS | 65 nm CMOS | 65 nm CMOS | 45 nm SOI |
Inclusion | LNA + Mixer | LNA + Mixer + VGA | LNA + Mixer | LNA + Mixer | LNA + Mixer |
RF/IF (GHz) | 24/0.125 | 24/0.1 | 24/0.002 | 21.5/0.1 | 24/NA |
CG (dB) | 20.3 | 36 | 28.3 | 14.5 | 26.2 |
NF (dB) | 7 | 9.9 | 5 | 5.7 | 5.6 |
IP1dB (dBm) | −22 | −35 | −28 | −40 | NA |
Knee-point (kHz) | 60 | NA | NA | NA | NA |
PDC1 (mW) | 21.1 1 | 40.8 | 26 | NA | NA |
PDC2 (mW) | 16 | NA | NA | 0.683 | NA |
Area 2 (mm2) | 0.65 | 0.8 | 0.66 | 0.4 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Xia, Q.; Huang, J.; Li, J.; Chang, H.; Sun, B.; Liu, H. A 24 GHz Direct Conversion Receiver for FMCW Ranging Radar Based on Low Flicker Noise Mixer. Electronics 2021, 10, 722. https://doi.org/10.3390/electronics10060722
Li D, Xia Q, Huang J, Li J, Chang H, Sun B, Liu H. A 24 GHz Direct Conversion Receiver for FMCW Ranging Radar Based on Low Flicker Noise Mixer. Electronics. 2021; 10(6):722. https://doi.org/10.3390/electronics10060722
Chicago/Turabian StyleLi, Dongze, Qingzhen Xia, Jiawei Huang, Jinwei Li, Hudong Chang, Bing Sun, and Honggang Liu. 2021. "A 24 GHz Direct Conversion Receiver for FMCW Ranging Radar Based on Low Flicker Noise Mixer" Electronics 10, no. 6: 722. https://doi.org/10.3390/electronics10060722
APA StyleLi, D., Xia, Q., Huang, J., Li, J., Chang, H., Sun, B., & Liu, H. (2021). A 24 GHz Direct Conversion Receiver for FMCW Ranging Radar Based on Low Flicker Noise Mixer. Electronics, 10(6), 722. https://doi.org/10.3390/electronics10060722