Advancements in Cosmetic Science: A Review of Ingredients and Technologies for Holistic Health and Longevity
Abstract
1. Introduction
2. Skin Care
2.1. Peptides-Based Ingredients
2.1.1. Acetyl Tetrapeptide-5
2.1.2. Copper Tripeptide (GHK-Cu)
2.1.3. Dipeptide Diaminobutyroyl Benzylamide Diacetate
2.2. Naturally Derived Ingredients
2.2.1. Ectoin
2.2.2. Aloe Vera Leaf Extract and Trimethylglycine
2.2.3. Prunus Mume Fruit Extract
2.2.4. Andrographolide
3. Hair Care
3.1. Peptides-Based Ingredients
Copper Tripeptide, GHK-Cu
3.2. Naturally Derived Ingredients
3.2.1. Biotin
3.2.2. Wasabi
3.2.3. Vanyline
3.2.4. Shikimic Acid
3.2.5. Tetrahydroxystilbene Glucoside
4. Oral Care
4.1. Naturally Derived Ingredients
4.1.1. Hydroxyapatite
4.1.2. Aspartic Acid
4.1.3. DL–Malic Acid
5. Beyond Beauty: The Power of Neurocosmetics
5.1. Aromatherapy
5.1.1. Phytoncides
Immune Function and Stress Management
Anxiety Relief and Mood Enhancement
6. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Argentieri, M.A.; Amin, N.; Nevado-Holgado, A.J.; Sproviero, W.; Collister, J.A.; Keestra, S.M.; Kuilman, M.M.; Ginos, B.N.R.; Ghanbari, M.; Doherty, A.; et al. Integrating the Environmental and Genetic Architectures of Aging and Mortality. Nat. Med. 2025, 31, 1016–1025. [Google Scholar] [CrossRef]
- Aliberti, S.M.; Capunzo, M. The Power of Environment: A Comprehensive Review of the Exposome’s Role in Healthy Aging, Longevity, and Preventive Medicine—Lessons from Blue Zones and Cilento. Nutrients 2025, 17, 722. [Google Scholar] [CrossRef] [PubMed]
- Mitina, M.; Young, S.; Zhavoronkov, A. Psychological Aging, Depression, and Well-Being. Aging 2020, 12, 18765–18777. [Google Scholar] [CrossRef] [PubMed]
- Henriques, M.; Patnaik, D.; Henriques, M.; Patnaik, D. Social Media and Its Effects on Beauty. In Beauty—Cosmetic Science, Cultural Issues and Creative Developments; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Kemp, A.H.; Fisher, Z. Wellbeing, Whole Health and Societal Transformation: Theoretical Insights and Practical Applications. Glob. Adv. Health Med. 2022, 11, 21649561211073077. [Google Scholar] [CrossRef]
- Suarez, C.G.; Wollenweber, U. The Power of Holistic Beauty: The Future of Personal Care. HPC Today, March/April 2024; Volume 20. [Google Scholar]
- Ustymenko, R. Trends and Innovations in Cosmetic Marketing. Econ. Educ. 2023, 8, 12–17. [Google Scholar] [CrossRef]
- Kaushik, D.; Garg, M.; Dixit, G. Holistic Approaches to Mental Health: Integrating Mind, Body, and Spirit for Comprehensive Well-Being. Int. J. Adv. Biochem. Res. 2024, 8, 295–299. [Google Scholar] [CrossRef]
- Dreno, B.; Amici, J.M.; Demessant-Flavigny, A.L.; Wright, C.; Taieb, C.; Desai, S.R.; Alexis, A. The Impact of Acne, Atopic Dermatitis, Skin Toxicities and Scars on Quality of Life and the Importance of a Holistic Treatment Approach. Clin. Cosmet. Investig. Dermatol. 2021, 14, 623–632. [Google Scholar] [CrossRef]
- Saluja, S.S.; Fabi, S.G. A Holistic Approach to Antiaging as an Adjunct to Antiaging Procedures: A Review of the Literature. Dermatol. Surg. 2017, 43, 475–484. [Google Scholar] [CrossRef]
- Rovero, P.; Malgapo, D.M.H.; Sparavigna, A.; Beilin, G.; Wong, V.; Lao, M.P. The Clinical Evidence-Based Paradigm of Topical Anti-Aging Skincare Formulations Enriched with Bio-Active Peptide SA1-III (KP1) as Collagen Modulator: From Bench to Bedside. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2693–2703. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, K.; Zhang, W.; Zhang, G.; Zhou, M. Protective and Anti-Aging Effects of 5 Cosmeceutical Peptide Mixtures on Hydrogen Peroxide-Induced Premature Senescence in Human Skin Fibroblasts. Skin Pharmacol. Physiol. 2021, 34, 194–202. [Google Scholar] [CrossRef]
- Dymek, M.; Olechowska, K.; Hąc-Wydro, K.; Sikora, E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics 2023, 15, 2485. [Google Scholar] [CrossRef]
- Pickart, L.; Margolina, A. Skin Regenerative and Anti-Cancer Actions of Copper Peptides. Cosmetics 2018, 5, 29. [Google Scholar] [CrossRef]
- Pickart, L.; Margolina, A. Regenerative and Protective Actions of the GHK-Cu Peptide in the Light of the New Gene Data. Int. J. Mol. Sci. 2018, 19, 1987. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Lee, A.; Zhu, L.; Morton, J.; Ladiges, W. The Potential of GHK as an Anti-Aging Peptide. Aging Pathobiol. Ther. 2020, 2, 58–61. [Google Scholar] [CrossRef]
- Choi, H.; Kang, Y.; Ryoo, S.; Shin, J.; Na, J.; Huh, C.; Park, K. Stem Cell Recovering Effect of Copper-free GHK in Skin. J. Pept. Sci. 2012, 18, 685–690. [Google Scholar] [CrossRef]
- Abdulghani, A.A.; Sherr, A.; Shirin, S.; Solodkina, G.; Tapia, E.M.; Wolf, B.; Gottlieb, A.B. Effects of Topical Creams Containing Vitamin C, a Copper-Binding Peptide Cream and Melatonin Compared with Tretinoin on the Ultrastructure of Normal Skin—A Pilot Clinical, Histologic, and Ultrastructural Study. Dis. Man. Clin. Out. 1998, 4, 136–141. [Google Scholar]
- Munawar, A.; Ali, S.; Akrem, A.; Betzel, C. Snake Venom Peptides: Tools of Biodiscovery. Toxins 2018, 10, 474. [Google Scholar] [CrossRef]
- Gorouhi, F.; Maibach, H.I. Role of Topical Peptides in Preventing or Treating Aged Skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef]
- Campiche, R.; Pascucci, F.; Jiang, L.; Vergne, T.; Cherel, M.; Gougeon, S.; Préstat-Marquis, E.; François, G.; Laurent, G.; Gempeler, M. Facial Expression Wrinkles and Their Relaxation by a Synthetic Peptide. Int. J. Pept. Res. Ther. 2021, 27, 1009–1017. [Google Scholar] [CrossRef]
- Heinrich, U.; Garbe, B.; Tronnier, H. In Vivo Assessment of Ectoin: A Randomized, Vehicle-Controlled Clinical Trial. Skin Pharmacol. Physiol. 2007, 20, 211–218. [Google Scholar] [CrossRef]
- Buenger, J.; Driller, H. Ectoin: An Effective Natural Substance to Prevent UVA-Induced Premature Photoaging. Skin Pharmacol. Physiol. 2004, 17, 232–237. [Google Scholar] [CrossRef]
- Kauth, M.; Trusova, O.V. Topical Ectoine Application in Children and Adults to Treat Inflammatory Diseases Associated with an Impaired Skin Barrier: A Systematic Review. Dermatol. Ther. 2022, 12, 295–313. [Google Scholar] [CrossRef]
- Bujak, T.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules 2020, 25, 1433. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; Schiraldi, C.; Baroni, A.; Paoletti, I.; Lamberti, M.; De Rosa, M.; Tufano, M.A. Ectoine from Halophilic Microorganisms Induces the Expression of Hsp70 and hsp70B′ in Human Keratinocytes Modulating the Proinflammatory Response. Cell Stress Chaperones. 2005, 10, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Filatov, V.; Varava, A.; Ilin, E. Molecular Modelling and In Vitro Research of New Substances for the Targeted Stimulation of AQP3 in Skin. Chem. Proc. 2023, 14, 51. [Google Scholar] [CrossRef]
- Hara-Chikuma, M.; Verkman, A.S. Roles of Aquaporin-3 in the Epidermis. J. Investig. Dermatol. 2008, 128, 2145–2151. [Google Scholar] [CrossRef]
- Filatov, V.; Sokolova, A.; Savitskaya, N.; Olkhovskaya, M.; Varava, A.; Ilin, E.; Patronova, E. Synergetic Effects of Aloe Vera Extract with Trimethylglycine for Targeted Aquaporin 3 Regulation and Long-Term Skin Hydration. Molecules 2024, 29, 1540. [Google Scholar] [CrossRef]
- Son, H.-U.; Choi, H.-J.; Alam, M.B.; Jeong, C.G.; Lee, H.I.; Kim, S.L.; Zhao, P.; Kim, T.-H.; Lee, S.-H. Prunus Mume Seed Exhibits Inhibitory Effect on Skin Senescence via SIRT1 and MMP-1 Regulation. Oxid. Med. Cell. Longev. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Pi, K.; Lee, K. Prunus Mume Extract Exerts Antioxidant Activities and Suppressive Effect of Melanogenesis under the Stimulation by Alpha-Melanocyte Stimulating Hormone in B16-F10 Melanoma Cells. Biosci. Biotechnol. Biochem. 2017, 81, 1883–1890. [Google Scholar] [CrossRef]
- You, J.; Roh, K.-B.; Li, Z.; Liu, G.; Tang, J.; Shin, S.; Park, D.; Jung, E. The Antiaging Properties of Andrographis Paniculata by Activation Epidermal Cell Stemness. Molecules 2015, 20, 17557–17569. [Google Scholar] [CrossRef]
- Bayazid, A.B.; Hwang, U.K.; Jang, Y.A.; Jeong, Y.H.; Jo, Y.C.; Lim, B.O. Andrographis Paniculata Leaves Extract Alleviates UVB-Induced HaCaT Cells Through Suppressing Mitogen-Activated Protein Kinases Activation. Nat. Prod. Commun. 2024, 19, 1–10. [Google Scholar] [CrossRef]
- Janghel, V.; Patel, P.; Chandel, S.S. Plants Used for the Treatment of Icterus (Jaundice) in Central India: A Review. Ann. Hepatol. 2019, 18, 658–672. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L. The Human Tri-Peptide GHK and Tissue Remodeling. J. Biomater. Sci. Polym. Ed. 2008, 19, 969–988. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Sim, H.B.; Jang, Y.H.; Lee, S.-J.; Kim, D.W.; Yim, S.-H. Efficacy of a Complex of 5-Aminolevulinic Acid and Glycyl-Histidyl-Lysine Peptide on Hair Growth. Ann. Dermatol. 2016, 28, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.P.; Swink, S.M.; Castelo-Soccio, L. A Review of the Use of Biotin for Hair Loss. Skin Appendage Disord. 2017, 3, 166–169. [Google Scholar] [CrossRef]
- Soleymani, T.; Sicco, K.L.; Shapiro, J. The Infatuation with Biotin Supplementation: Is There Truth Behind Its Rising Popularity? A Comparative Analysis of Clinical Efficacy versus Social Popularity. J. Drugs Dermatol. 2017, 16, 496–500. [Google Scholar]
- Yamada-Kato, T.; Okunishi, I.; Fukamatsu, Y.; Tsuboi, H.; Yoshida, Y. Stimulatory Effects of 6-Methylsulfinylhexyl Isothiocyanate on Cultured Human Follicle Dermal Papilla Cells. Food Sci. Technol. Res. 2018, 24, 567–572. [Google Scholar] [CrossRef]
- Oka, Y.; Takahashi, K.; Ohta, T. The Effects of Vanilloid Analogues Structurally Related to Capsaicin on the Transient Receptor Potential Vanilloid 1 Channel. Biochem. Biophys. Rep. 2022, 30, 101243. [Google Scholar] [CrossRef]
- Bodó, E.; Bíró, T.; Telek, A.; Czifra, G.; Griger, Z.; Tóth, B.I.; Mescalchin, A.; Ito, T.; Bettermann, A.; Kovács, L.; et al. A Hot New Twist to Hair Biology: Involvement of Vanilloid Receptor-1 (VR1/TRPV1) Signaling in Human Hair Growth Control. Am. J. Pathol. 2005, 166, 985–998. [Google Scholar] [CrossRef]
- Bassino, E.; Gasparri, F.; Munaron, L. Protective Role of Nutritional Plants Containing Flavonoids in Hair Follicle Disruption: A Review. Int. J. Mol. Sci. 2020, 21, 523. [Google Scholar] [CrossRef]
- Choi, M.; Choi, S.-J.; Jang, S.; Choi, H.-I.; Kang, B.-M.; Hwang, S.T.; Kwon, O. Shikimic Acid, a Mannose Bioisostere, Promotes Hair Growth with the Induction of Anagen Hair Cycle. Sci. Rep. 2019, 9, 17008. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, I.; Ishimoto, H.; Matsuo, M.; Ikeda, N.; Minamino, M.; Kato, Y. The Water-Soluble Extract of Illicium Anisatum Stimulates Mouse Vibrissae Follicles in Organ Culture. Exp. Dermatol. 2004, 13, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Han, M.-N.; Lu, J.-M.; Zhang, G.-Y.; Yu, J.; Zhao, R.-H. Mechanistic Studies on the Use of Polygonum multiflorum for the Treatment of Hair Graying. BioMed Res. Int. 2015, 2015, 651048. [Google Scholar] [CrossRef]
- Thang, N.D.; Diep, P.N.; Lien, P.T.H.; Lien, L.T. Polygonum Multiflorum Root Extract as a Potential Candidate for Treatment of Early Graying Hair. J. Adv. Pharm. Technol. Res. 2017, 8, 8–13. [Google Scholar] [CrossRef]
- Butera, A.; Maiorani, C.; Gallo, S.; Pascadopoli, M.; Quintini, M.; Lelli, M.; Tarterini, F.; Foltran, I.; Scribante, A. Biomimetic Action of Zinc Hydroxyapatite on Remineralization of Enamel and Dentin: A Review. Biomimetics 2023, 8, 71. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, J.; Zhang, C.; Chen, C.; Chen, Y.; Zheng, B.; Pan, H.; Shao, C.; Jin, B.; Tang, R.; et al. Effect of Aspartic Acid on the Crystallization Kinetics of ACP and Dentin Remineralization. J. Mech. Behav. Biomed. Mater. 2021, 115, 104226. [Google Scholar] [CrossRef]
- Amaechi, B.T.; AbdulAzees, P.A.; Alshareif, D.O.; Shehata, M.A.; Lima, P.P.d.C.S.; Abdollahi, A.; Kalkhorani, P.S.; Evans, V. Comparative Efficacy of a Hydroxyapatite and a Fluoride Toothpaste for Prevention and Remineralization of Dental Caries in Children. BDJ Open 2019, 5, 18. [Google Scholar] [CrossRef]
- O’Hagan-Wong, K.; Enax, J.; Meyer, F.; Ganss, B. The Use of Hydroxyapatite Toothpaste to Prevent Dental Caries. Odontology 2022, 110, 223–230. [Google Scholar] [CrossRef]
- Florea, A.-D.; Pop, L.C.; Benea, H.-R.-C.; Tomoaia, G.; Racz, C.-P.; Mocanu, A.; Dobrota, C.-T.; Balint, R.; Soritau, O.; Tomoaia-Cotisel, M. Remineralization Induced by Biomimetic Hydroxyapatite Toothpastes on Human Enamel. Biomimetics 2023, 8, 450. [Google Scholar] [CrossRef]
- Lelli, M.; Putignano, A.; Marchetti, M.; Foltran, I.; Mangani, F.; Procaccini, M.; Roveri, N.; Orsini, G. Remineralization and Repair of Enamel Surface by Biomimetic Zn-Carbonate Hydroxyapatite Containing Toothpaste: A Comparative in Vivo Study. Front. Physiol. 2014, 5, 333. [Google Scholar] [CrossRef]
- Ivanova, A. Towards Improved Remineralization: Calcium Ion Incorporation into Enamel Induced Using Aspartic Acid In Vitro. In Proceedings of the 1st International Online Conference on Biomimetics, Online, 15–17 May 2024. [Google Scholar]
- Amelia, H.; Febriani, M.; Rachmawati, E. Potencial of Various Natural Bleaching Ingridients on Teeth Discoloration. J. Adv. Med. Dent. Scie Res. 2022, 10, 109–114. [Google Scholar]
- Neha, R.; Priya, V.V.; Arthanari, A.; Gayathri, R.; Kavitha, S.; Reshma, P.K. Effect of Strawberry Extract on Tooth Discoloration and Morphology- An in Vitro Study. J. Pharm. Res. Int. 2022, 27–36. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Kim, S. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response. Sci. Pharm. 2016, 84, 724–752. [Google Scholar] [CrossRef] [PubMed]
- Kontaris, I.; East, B.S.; Wilson, D.A. Behavioral and Neurobiological Convergence of Odor, Mood and Emotion: A Review. Front. Behav. Neurosci. 2020, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.J.J.; Eslinger, R.; Ansari, A.; Richardson, J.; Behan, M.B.; Smith, Q.X.Y. Contrasting Activation of Brain Systems by Complex Designed Fragrance. Proc. Intl. Soc. Mag. Reson. Med. 2003, 11, 1878. [Google Scholar]
- Matsubara, E.; Tsunetsugu, Y.; Ohira, T.; Sugiyama, M. Essential Oil of Japanese Cedar (Cryptomeria Japonica) Wood Increases Salivary Dehydroepiandrosterone Sulfate Levels after Monotonous Work. Int. J. Environ. Res. Public Health 2017, 14, 97. [Google Scholar] [CrossRef]
- Joung, D.; Song, C.; Ikei, H.; Okuda, T.; Igarashi, M.; Koizumi, H.; Park, B.J.; Yamaguchi, T.; Takagaki, M.; Miyazaki, Y. Physiological and Psychological Effects of Olfactory Stimulation with D-Limonene. Adv. Hortic. Sci. 2014, 28, 90–94. [Google Scholar]
- Matsubara, E.; Fukagawa, M.; Okamoto, T.; Ohnuki, K.; Shimizu, K.; Kondo, R. The Essential Oil of Abies Sibirica (Pinaceae) Reduces Arousal Levels after Visual Display Terminal Work. Flavour Fragr. J. 2011, 26, 204–210. [Google Scholar] [CrossRef]
- Gok, B.; Budama-Kilinc, Y.; Kecel-Gunduz, S. Anti-Aging Activity of Syn-Ake Peptide by in Silico Approaches and in Vitro Tests. J. Biomol. Struct. Dyn. 2023, 42, 5015–5029. [Google Scholar] [CrossRef]
- Shin, H.J.; Bak, S.U.; La, H.N.; Kang, J.S.; Lee, H.H.; Eom, H.J.; Lee, B.K.; Kang, H.A. Efficient Transdermal Delivery of Functional Protein Cargoes by a Hydrophobic Peptide MTD 1067. Sci. Rep. 2022, 12, 10853. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Cho, H.-E.; Moon, S.H.; Ahn, H.-J.; Bae, S.; Cho, H.-D.; An, S. Transdermal Delivery Systems in Cosmetics. Biomed. Dermatol. 2020, 4, 10. [Google Scholar] [CrossRef]
- Henriques, M.C.; Faustino, M.A.F.; Braga, S.S. Curcumin Innovative Delivery Forms: Paving the ‘Yellow Brick Road’ of Antitumoral Phytotherapy. Appl. Sci. 2020, 10, 8990. [Google Scholar] [CrossRef]
- Puig, A.; García-Antón, J.; Pérez, R.; Mangues, M. Eyeseryl ® and Leuphasyl ®: Synthetic Peptides as Advanced Cosmetic Actives. Semant. Sch. 2006, 164–175. [Google Scholar]
- Pai, V.V.; Bhandari, P.; Shukla, P. Topical Peptides as Cosmeceuticals. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 9–18. [Google Scholar] [CrossRef]
- Tlish, M.M.; M, T.M.; Shavilova, M.E.; E, Ш.M. Modern approaches to the prevention and correction of complications caused by systemic treatment of severe acne forms. Vestn. Dermatol. I Venerol. 2019, 95, 87–93. [Google Scholar] [CrossRef]
- Hossain, M.S.; Urbi, Z.; Sule, A.; Rahman, K.M.H. Andrographis Paniculata (Burm. f.) Wall. Ex Nees: A Review of Ethnobotany, Phytochemistry, and Pharmacology. Sci. World J. 2014, 2014, 274905. [Google Scholar] [CrossRef]
- Okhuarobo, A.; Falodun, J.E.; Erharuyi, O.; Imieje, V.; Falodun, A.; Langer, P. Harnessing the Medicinal Properties of Andrographis Paniculata for Diseases and beyond: A Review of Its Phytochemistry and Pharmacology. Asian Pac. J. Trop. Dis. 2014, 4, 213–222. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Islam, M.A.; Shaw, S.; Khan, I.N.; Saravi, S.S.S.; Ahmad, S.; Rehman, S.; Gupta, V.K.; et al. Andrographolide, a Diterpene Lactone from Andrographis Paniculata and Its Therapeutic Promises in Cancer. Cancer Lett. 2018, 420, 129–145. [Google Scholar] [CrossRef]
- Mussard, E.; Cesaro, A.; Lespessailles, E.; Legrain, B.; Berteina-Raboin, S.; Toumi, H. Andrographolide, a Natural Antioxidant: An Update. Antioxidants 2019, 8, 571. [Google Scholar] [CrossRef]
- Raghavan, R.; Cheriyamundath, S.; Madassery, J.; Madassery, J. Exploring the Mechanisms of Cytotoxic and Anti-inflammatory Property of Andrographolide and Its Derivatives. Pharmacogn. Rev. 2018, 12, 56–65. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lee, K.-C.; Chang, H.-H. Modulation of the Cannabinoid Receptors by Andrographolide Attenuates Hepatic Apoptosis Following Bile Duct Ligation in Rats with Fibrosis. Apoptosis 2010, 15, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Gokce, N.; Basgoz, N.; Kenanoglu, S.; Akalin, H.; Ozkul, Y.; Ergoren, M.C.; Beccari, T.; Bertelli, M.; Dundar, M. An Overview of the Genetic Aspects of Hair Loss and Its Connection with Nutrition. J. Prev. Med. Hyg. 2022, 63, E228–E238. [Google Scholar] [PubMed]
- Chavan, D. Reversal of Premature Hair Graying Treated with a Topical Formulation Containing α-Melanocyte-Stimulating Hormone Agonist (Greyverse Solution 2%). Int. J. Trichology 2022, 14, 207–209. [Google Scholar] [CrossRef]
- Pyo, H.K.; Yoo, H.G.; Won, C.H.; Lee, S.H.; Kang, Y.J.; Eun, H.C.; Cho, K.H.; Kim, K.H. The Effect of Tripeptide-Copper Complex on Human Hair Growth in Vitro. Arch. Pharm. Res. 2007, 30, 834–839. [Google Scholar] [CrossRef]
- Depree, J.A.; Howard, T.M.; Savage, G.P. Flavour and Pharmaceutical Properties of the Volatile Sulphur Compounds of Wasabi (Wasabia Japonica). Food Res. Int. 1998, 31, 329–337. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J. Biological Effects of Tetrahydroxystilbene Glucoside: An Active Component of a Rhizome Extracted from Polygonum Multiflorum. Oxid. Med. Cell. Longev. 2018, 2018, 3641960. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Lin, P.; He, Y.; Yu, J.; Zhao, R. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum. Evid. Based Complement. Alternat Med. 2015, 2015, 517901. [Google Scholar] [CrossRef]
- Salminen, A.; Määttä, A.M.; Mäntylä, P.; Leskelä, J.; Pietiäinen, M.; Buhlin, K.; Suominen, A.L.; Paju, S.; Sattler, W.; Sinisalo, J.; et al. Systemic Metabolic Signatures of Oral Diseases. J. Dent. Res. 2024, 103, 13–21. [Google Scholar] [CrossRef]
- Chan, S.H. The Role of Oral Health in the Prevention of Systemic Diseases. ULMHS 2023, 1, 32–40. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Cantos, A. Oral Inflammation and Infection, and Chronic Medical Diseases: Implications for the Elderly. Periodontology 2000 2016, 72, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Berglundh, T.; Sculean, A.; Tonetti, M.S. EFP Workshop Participants and Methodological Consultants. Treatment of Stage I-III Periodontitis-The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2020, 47 (Suppl. S22), 4–60. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, K.; Mäntylä, P.; Buhlin, K.; Paju, S.; Nieminen, M.S.; Sinisalo, J.; Pussinen, P.J. A Common Periodontal Pathogen Has an Adverse Association with Both Acute and Stable Coronary Artery Disease. Atherosclerosis 2012, 223, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. Periodontitis: From Microbial Immune Subversion to Systemic Inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef]
- Brock, M.; Bahammam, S.; Sima, C. The Relationships Among Periodontitis, Pneumonia and COVID-19. Front. Oral Health 2021, 2, 801815. [Google Scholar] [CrossRef]
- D’Aiuto, F.; Gkranias, N.; Bhowruth, D.; Khan, T.; Orlandi, M.; Suvan, J.; Masi, S.; Tsakos, G.; Hurel, S.; Hingorani, A.D.; et al. Systemic Effects of Periodontitis Treatment in Patients with Type 2 Diabetes: A 12 Month, Single-Centre, Investigator-Masked, Randomised Trial. Lancet Diabetes Endocrinol. 2018, 6, 954–965. [Google Scholar] [CrossRef]
- Schenkein, H.A.; Loos, B.G. Inflammatory Mechanisms Linking Periodontal Diseases to Cardiovascular Diseases. J. Clin. Periodontol. 2013, 40 (Suppl. S14), S51–S69. [Google Scholar] [CrossRef]
- Kilian, M.; Chapple, I.L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.L.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The Oral Microbiome—An Update for Oral Healthcare Professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef]
- Liu, Y.; Qv, W.; Ma, Y.; Zhang, Y.; Ding, C.; Chu, M.; Chen, F. The Interplay between Oral Microbes and Immune Responses. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef]
- Chalmers, N.I.; Wislar, J.S.; Boynes, S.G.; Doherty, M.; Nový, B.B. Improving Health in the United States: Oral Health Is Key to Overall Health. J. Am. Dent. Assoc. 2017, 148, 477–480. [Google Scholar] [CrossRef]
- Abedi, M.; Ghasemi, Y.; Nemati, M.M. Nanotechnology in Toothpaste: Fundamentals, Trends, and Safety. Heliyon 2024, 10, e24949. [Google Scholar] [CrossRef]
- Epple, M.; Meyer, F.; Enax, J. A Critical Review of Modern Concepts for Teeth Whitening. Dent. J. 2019, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Thanveer, K.; Singh, V.; Jain, A.; Mitra, S.; Singh, S. Impact of Dental Treatment on Oral Health-Related Quality of Life of Patients. Cureus 2023, 15, e38625. [Google Scholar] [CrossRef] [PubMed]
- Paszynska, E.; Pawinska, M.; Gawriolek, M.; Kaminska, I.; Otulakowska-Skrzynska, J.; Marczuk-Kolada, G.; Rzatowski, S.; Sokolowska, K.; Olszewska, A.; Schlagenhauf, U.; et al. Impact of a Toothpaste with Microcrystalline Hydroxyapatite on the Occurrence of Early Childhood Caries: A 1-Year Randomized Clinical Trial. Sci. Rep. 2021, 11, 2650. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Villalpando, V.; Fernandez-Hernandez, E.; Rosales-Berber, M.; Torre-Delgadillo, G.; Garrocho-Rangel, A.; Pozos-Guillén, A. Clinical Efficacy of Two Topical Agents for the Remineralization of Enamel White Spot Lesions in Primary Teeth. Pediatr. Dent. 2021, 43, 95–101. [Google Scholar]
- Steinert, S.; Zwanzig, K.; Doenges, H.; Kuchenbecker, J.; Meyer, F.; Enax, J. Daily Application of a Toothpaste with Biomimetic Hydroxyapatite and Its Subjective Impact on Dentin Hypersensitivity, Tooth Smoothness, Tooth Whitening, Gum Bleeding, and Feeling of Freshness. Biomimetics 2020, 5, 17. [Google Scholar] [CrossRef]
- Rizzi, V.; Gubitosa, J.; Fini, P.; Cosma, P. Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. Cosmetics 2021, 8, 66. [Google Scholar] [CrossRef]
- Haykal, D.; Berardesca, E.; Kabashima, K.; Dréno, B. Beyond Beauty: Neurocosmetics, the Skin-Brain Axis, and the Future of Emotionally Intelligent Skincare. Clin. Dermatol. 2025, 43, 523–527. [Google Scholar] [CrossRef]
- Seiler, A.; Fagundes, C.P.; Christian, L.M. The Impact of Everyday Stressors on the Immune System and Health. In Stress Challenges and Immunity in Space; Springer: Berlin/Heidelberg, Germany, 2020; pp. 71–92. [Google Scholar]
- Gautam, S.; Jain, A.; Chaudhary, J.; Gautam, M.; Gaur, M.; Grover, S. Concept of Mental Health and Mental Well-Being, It’s Determinants and Coping Strategies. Indian J. Psychiatry 2024, 66, S231–S244. [Google Scholar] [CrossRef]
- Xu, J.; Roberts, R.E. The Power of Positive Emotions: It’s a Matter of Life or Death--Subjective Well-Being and Longevity over 28 Years in a General Population. Health Psychol. 2010, 29, 9–19. [Google Scholar] [CrossRef]
- Krittanawong, C.; Maitra, N.S.; Virk, H.U.H.; Fogg, S.; Wang, Z.; Kaplin, S.; Gritsch, D.; Storch, E.A.; Tobler, P.N.; Charney, D.S.; et al. Association of Optimism with Cardiovascular Events and All-Cause Mortality: Systematic Review and Meta-Analysis. Am. J. Med. 2022, 135, 856–863.e2. [Google Scholar] [CrossRef]
- Field, T.; Diego, M.; Hernandez-Reif, M.; Cisneros, W.; Feijo, L.; Vera, Y.; Gil, K.; Grina, D.; He, Q.C. Lavender Fragrance Cleansing Gel Effects on Relaxation. Int. J. Neurosci. 2005, 115, 207–222. [Google Scholar] [CrossRef]
- Li, Q.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Kawada, T.; Park, B.J.; et al. Effect of Phytoncide from Trees on Human Natural Killer Cell Function. Int. J. Immunopathol. Pharmacol. 2009, 22, 951–959. [Google Scholar] [CrossRef]
- Chae, Y.; Lee, S.; Jo, Y.; Kang, S.; Park, S.; Kang, H. The Effects of Forest Therapy on Immune Function. Int. J. Environ. Res. Public Health 2021, 18, 8440. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Li, Y.J.; Wakayama, Y.; et al. A Forest Bathing Trip Increases Human Natural Killer Activity and Expression of Anti-Cancer Proteins in Female Subjects. J. Biol. Regul. Homeost. Agents 2008, 22, 45–55. [Google Scholar] [PubMed]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Suzuki, H.; Li, Y.J.; Wakayama, Y.; et al. Visiting a Forest, but Not a City, Increases Human Natural Killer Activity and Expression of Anti-Cancer Proteins. Int. J. Immunopathol. Pharmacol. 2008, 21, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Park, B.-J.; Tsunetsugu, Y.; Ishii, H.; Furuhashi, S.; Hirano, H.; Kagawa, T.; Miyazaki, Y. Physiological Effects of Shinrin-Yoku (Taking in the Atmosphere of the Forest) in a Mixed Forest in Shinano Town, Japan. Scand. J. For. Res. 2008, 23, 278–283. [Google Scholar] [CrossRef]
- Lee, J.; Park, B.-J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of Forest Bathing on Physiological and Psychological Responses in Young Japanese Male Subjects. Public Health 2011, 125, 93–100. [Google Scholar] [CrossRef]
- Furuyashiki, A.; Tabuchi, K.; Norikoshi, K.; Kobayashi, T.; Oriyama, S. A Comparative Study of the Physiological and Psychological Effects of Forest Bathing (Shinrin-Yoku) on Working Age People with and without Depressive Tendencies. Environ. Health Prev. Med. 2019, 24, 46. [Google Scholar] [CrossRef]
- Chen, H.; Yu, C.-P.; Lee, H.-Y. The Effects of Forest Bathing on Stress Recovery: Evidence from Middle-Aged Females of Taiwan. Forests 2018, 9, 403. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Constitution of the World Health Organization. Available online: https://www.who.int/about/governance/constitution (accessed on 26 July 2024).
Properties | Description | References | Strength of Evidence | ||
---|---|---|---|---|---|
SKIN CARE | Peptides-Based Ingredients | ||||
Acetyl tetrapeptide-5 |
| Acetyl tetrapeptide-5 exhibits a draining and decongestant effect that results in improved hydration and elasticity in the periocular area, contributing to a reduction in eye edema and dark circles. | [11,12] | Low | |
Copper tripeptide |
| GHK-Cu benefits both skin fibroblasts and epidermal basal cells by enhancing cell viability, growth factor production, and stemness markers, thereby aiding in skin repair. | [13,14,15,16,17,18] | Low | |
Dipeptide diaminobutyroyl benzylamide diacetate |
| Tripeptide-3 acts as an intensive anti-wrinkle agent by mimicking Waglerin-1’s mechanism of action on nAChRs, effectively reducing muscle contractions and promoting facial muscle relaxation. | [19,20,21] | Low | |
Naturally Derived Ingredients | |||||
Ectoin |
| Ectoin protects cell membranes by forming a water shell (ectoin hydrocomplex) around proteins, finally enhancing skin hydration and reducing transepidermal water loss (TEWL). | [22,23,24,25,26] | Strong | |
Aloe vera leaf extract and Trimethylglycine |
| The combination of Aloe vera (Aloe barbadensis) leaf extract and trimethylglycine in equal mass ratio has shown significant efficacy in increasing AQP3 levels within epidermal cells. | [27,28,29] | Strong | |
Prunus mume fruit extract |
| Research indicates that P. mume extracts can inhibit melanin production and tyrosinase activity without causing cytotoxicity. | [30,31] | Strong | |
Andrographolide |
| Clinical results revealed that formulations containing APE significantly improve skin hydration, dermal density, wrinkles, and sagging after four and eight weeks of treatment. | [32,33,34] | Low | |
HAIR CARE | Peptides-Based Ingredients | ||||
Copper tripeptide |
| The tripeptide–copper complex exerts its effects through several mechanisms, including the stimulation of dermal fibroblasts and increased expression of VEGF. Additionally, GHK-Cu has been shown to decrease the secretion of transforming growth factor-β1 by dermal fibroblasts and reduce the number of apoptotic dermal papilla cells. | [35,36] | Low | |
Naturally Derived Ingredients | |||||
Biotin |
| Aside from conditions like alopecia and uncombable hair syndrome, there is no scientific validation of biotin’s efficacy in enhancing hair quality or quantity in individuals without a deficiency. | [37,38] | Low | |
Wasabi |
| Recent research by Yamada-Kato Et Al. (2018) has highlighted the potential of 6-MSITC (derived from Wasabi) in promoting hair growth through its effects on dermal papilla cells (DPCs), which play a key role in hair growth and cycling by releasing growth factors. | [39] | Low | |
Vanyline |
| Vanillyl butyl ether can help to prevent hair loss by increasing insulin-like growth factor (IGF-2) production, crucial for hair stem cell proliferation. | [40,41,42] | Low | |
Shikimic acid |
| SA exhibits reprogramming activities in human dermal fibroblasts, is effective for tissue regeneration, and has shown promising results in promoting hair growth in both in vivo mouse models and in vitro human hair follicles (HFs). | [43,44,45] | Low | |
Tetrahydroxystilbene Glucoside |
| Extracted from the root of Polygonum multiflorum, tetrahydroxystilbene glucoside enhances melanin synthesis in human SKMEL-28 melanoma cells through the activation of the MC1R/MITF/tyrosinase signaling pathway. | [46,47] | Strong | |
ORAL CARE | Naturally Derived Ingredients | ||||
Hydroxyapatite |
| HAP toothpastes can penetrate deeper into lesions, leading to results that are equivalent or non-inferior to fluoride toothpastes in terms of remineralizing initial caries lesions and preventing carious lesion development. | Strong | ||
Aspartic Acid |
| This approach results in remineralized dentin that exhibits mechanical and biological properties potentially similar to natural teeth, achieved through both internal and external mineralization of collagen fibers. When combined with 1% hydroxyapatite, remineralization was markedly enhanced. | [48,49,50,51,52,53,54] | Low | |
DL–Malic Acid |
| Malic acid acts as a tooth-whitening agent by oxidizing the surface of tooth enamel. This oxidation process involves the release of free oxygen radicals that target the double bonds of both organic and inorganic compounds in teeth, thereby facilitating the dissolution of stains. | [55,56] | Low | |
MENTAL WELL-BEING | Aromatherapy | Accumulating evidence from neuroimaging studies reveals that olfactory stimulation can modulate neural activity in regions associated with mood and emotion, suggesting a tightly interwoven relationship between olfactory pathways and emotional regulation. This interaction results in immediate physiological responses, such as alterations in blood pressure, muscle tension, pupil dilation, skin temperature, heart rate, and brain activity. | [57,58,59] | Low | |
Phytoncides | |||||
Japanese cedar |
| Japanese cedar wood essential oil increased salivary dehydroepiandrosterone sulfate (DHEA-s) levels in males after cognitive tasks, suggesting stress-relief effects during rest periods | [60] | Low | |
D-limonene |
| olfactory stimulation with D-limonene significantly increased parasympathetic nervous activity, decreased heart rate, and enhanced feelings of comfort, highlighting the compound’s role in promoting relaxation. | [61] | Low | |
Abies sibirica |
| Breathing air mixed with volatiles from the essential oil of Abies sibirica induced reduced arousal levels after visual display terminal (VDT) tasks, as measured by changes in heart rates and brain waves, underling a potential benefit in preventing VDT-related mental health disturbances such as sleep disorders, restlessness, and anxiety. | [62] | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erat, A.; Addor, G. Advancements in Cosmetic Science: A Review of Ingredients and Technologies for Holistic Health and Longevity. Cosmetics 2025, 12, 202. https://doi.org/10.3390/cosmetics12050202
Erat A, Addor G. Advancements in Cosmetic Science: A Review of Ingredients and Technologies for Holistic Health and Longevity. Cosmetics. 2025; 12(5):202. https://doi.org/10.3390/cosmetics12050202
Chicago/Turabian StyleErat, Anna, and Guénolé Addor. 2025. "Advancements in Cosmetic Science: A Review of Ingredients and Technologies for Holistic Health and Longevity" Cosmetics 12, no. 5: 202. https://doi.org/10.3390/cosmetics12050202
APA StyleErat, A., & Addor, G. (2025). Advancements in Cosmetic Science: A Review of Ingredients and Technologies for Holistic Health and Longevity. Cosmetics, 12(5), 202. https://doi.org/10.3390/cosmetics12050202