Bioactives in Nutricosmetics: A Focus on Caffeine from Tea to Coffee
Abstract
:1. Introduction
2. Bioactives-Composed Nutricosmetics
Bioactives | Sources | Applications | Side Effects | References |
---|---|---|---|---|
Caffeine | Different sources | It stimulates the blood circulation around the eyes, which may help to improve the look of dark circles and puffy under-eyes. Also, it may reduce photo damage, fine lines, wrinkles, and the appearance of cellulite. | Products with high concentrations of caffeine may cause redness, stinging, or burning in sensitive skin | [16,35,36] |
Chlorogenic acid | - | Its influence on skin functions, particularly concerning the dermal collagen net-work and the epidermal skin barrier, remains unclear (skin damages). Chlorogenic acid treatment on human dermal fibroblast Hs68 cell can promote the production of procollagen type I. It enhances the expression of skin barrier genes, including those encoding filaggrin, involucrin, and envoplakin, in epidermal keratinocytes. Additionally, it induces a complex response in the cytokine profile of these keratinocytes. | Not mentioned | [12] |
Caffeic acid and chlorogenic acid | Coffee bean and by-products | Coffee pulp extract exhibited significant free radical scavenging activity, inhibited tyrosinase, and improved skin health in healthy subjects. Furthermore, the in vivo findings suggest that supplementation with coffee pulp extract enhances skin moisture, brightness, elasticity, and collagen content while reducing spots, texture irregularities, wrinkles, and pores. | Not mentioned | [13] |
Trigonelline | Purified | It may have potential as an anti-obesity actor, while it has antidiabetic and anticancer effects. | Not mentioned | [14] |
Cafestol and kahweol | Coffee bean and by-products | They decreased extracellular melanin levels in B16F10 cells and lowered dendritic parameters in human melanocytes, showcasing their distinct potential to target extracellular melanogenesis and melanin export. This suggests they could serve as a promising candidate for treating hyperpigmentation disorders in human skin, with applications in both clinical and cosmetic settings. | Not mentioned | [15] |
Tree oil | Tea | It is used to treat acne, fungal infections (such as athlete’s foot), and minor cuts and abrasions due to its antimicrobial properties. | Tea tree oil can cause skin irritation, allergic reactions, and dryness, particularly if used undiluted | [29,31,37,38] |
Polyphenols | Green Tea | Green tea polyphenol patches are used for their antioxidant and anti-inflammatory properties to treat conditions like psoriasis and dermatitis. The patches deliver polyphenols transdermally to reduce inflammation and oxidative stress. | Green tea polyphenols are typically well-tolerated, but potential side effects include skin irritation, redness, and itching at the application site | [39,40,41] |
Polyphenols (green and black tea) | Camellia sinensis | Black and green tea polyphenols alleviate UV-induced damage in human skin. Both extracts adsorb UV radiation and have the potential to repair UV deep skin damage due to their high antioxidant activities. | Not mentioned | [42] |
Polyphenols | Camellia sinensis (L.) Kuntze | The polyphenol-rich extract of green tea exhibited anti-aging effects on B16F10 melanoma cells and human skin fibroblasts by inhibition of the tyrosinase and tyrosinase-related protein-2 activities. The enzyme inhibitory effect (MMP-2) is greater than vitamin C. | Not mentioned | [43] |
- Enhanced Skin Protection: Bioactive compounds like polyphenols (found in tea and coffee) and vitamins C and E are powerful antioxidants that protect the skin from environmental stressors, such as UV radiation and pollution.
- Anti-Aging Properties: Many bioactives, including retinoids, peptides, and polyphenols (found in tea and coffee), stimulate collagen production and promote cell turnover, reducing the appearance of fine lines and wrinkles.
- Anti-Inflammatory Effects: Bioactives such as polyphenols can reduce skin inflammation, making them effective in treating conditions like eczema and psoriasis.
- Antimicrobial Activity: Bioactives found in tea tree oil and honey possess natural antimicrobial properties, useful in managing acne and other microbial infections.
- Skin Brightening: Bioactives such cafestol, kahweol, caffeic, chlorogenic acid, and kojic acid inhibit melanin production, helping to even out the skin tone and reduce hyperpigmentation.
- Anti-Aging Creams: Often contain bioactives like retinoids, peptides, and antioxidants (polyphenols) to reduce wrinkles and improve skin elasticity.
- Brightening Serums: Typically include polyphenols (found in tea and coffee), vitamin C, niacinamide, and botanical extracts to lighten dark spots and enhance radiance.
- Acne Treatments: Use bioactives such as salicylic acid, benzoyl peroxide, and tea tree oil to clear pores and reduce inflammation.
3. Caffeine-Composed Nutricosmetics
- Stimulation of Microcirculation: Caffeine improves skin microcirculation, increasing blood flow and facilitating the oxygenation and nutrition of tissues, which can contribute to a reduction in cellulite and improvements in hair health.
- Inhibition of Phosphodiesterase: As a phosphodiesterase inhibitor, caffeine elevates cyclic AMP levels in cells, modulating various signalling pathways and reducing inflammation. Additionally, caffeine has been found to inhibit collagenase, elastase, and tyrosinase enzymes, which are involved in skin aging and pigmentation processes.
- Antioxidant Effects: Caffeine neutralises free radicals, protecting skin cells from oxidative damage induced by environmental factors such as UV radiation and pollution.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Othman, Z.A.; Aqel, A.; Alharbi, M.K.E.; Yacine Badjah-Hadj-Ahmed, A.; Al-Warthan, A.A. Fast chromatographic determination of caffeine in food using a capillary hexyl methacrylate monolithic column. Food Chem. 2012, 132, 2217–2223. [Google Scholar] [CrossRef]
- Cláudio, A.F.M.; Ferreira, A.M.; Freire, M.G.; Coutinho, J.A.P. Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids. Green Chem. 2013, 15, 2002–2010. [Google Scholar] [CrossRef]
- Rahimi, A.; Zanjanchi, M.A.; Bakhtiari, S.; Dehsaraei, M. Selective determination of caffeine in foods with 3D-graphene based ultrasound-assisted magnetic solid phase extraction. Food Chem. 2018, 262, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Tipduangta, P.; Watcharathirawongs, W.; Waritdecha, P.; Sirithunyalug, B.; Leelapornpisid, P.; Chaiyana, W.; Goh, C.F. Electrospun cellulose acetate/polyvinylpyrrolidone fiber mats as potential cosmetic under-eye masks for caffeine delivery. J. Drug Deliv. Sci. Technol. 2023, 86, 104732. [Google Scholar] [CrossRef]
- Elias, M.L.; Israeli, A.F.; Madan, R. Caffeine in Skincare: Its Role in Skin Cancer, Sun Protection, and Cosmetics. Indian J. Dermatol. 2023, 68, 546–550. [Google Scholar] [CrossRef]
- Bessada, S.M.; Alves, R.C.; PP Oliveira, M.B. Coffee silverskin: A review on potential cosmetic applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Martorell, P.; Genovés, S.; Ramón, D.; Stamatakis, K.; Fresno, M.; Molina, A.; Del Castillo, M.D. Coffee silverskin extract protects against accelerated aging caused by oxidative agents. Molecules 2016, 21, 721. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N.; Chaikul, P. Valorization of spent coffee grounds as the specialty material for dullness and aging of skin treatments. Chem. Biol. Technol. Agric. 2021, 8, 55. [Google Scholar] [CrossRef]
- dos Santos, É.M.; de Macedo, L.M.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.; Mazzola, P.G. Coffee by-products in topical formulations: A review. Trends Food Sci. Technol. 2021, 111, 280–291. [Google Scholar] [CrossRef]
- Calheiros, D.; Dias, M.I.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.; Fernandes, C.; Gonçalves, T. Antifungal activity of spent coffee ground extracts. Microorganisms 2023, 11, 242. [Google Scholar] [CrossRef]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Lee, K.-H.; Do, H.-K.; Kim, D.-Y.; Kim, W. Impact of chlorogenic acid on modulation of significant genes in dermal fibroblasts and epidermal keratinocytes. Biochem. Biophys. Res. Commun. 2021, 583, 22–28. [Google Scholar] [CrossRef]
- Tseng, Y.P.; Liu, C.; Chan, L.P.; Liang, C.H. Coffee pulp supplement affects antioxidant status and favors anti-aging of skin in healthy subjects. J. Cosmet. Dermatol. 2022, 21, 2189–2199. [Google Scholar] [CrossRef]
- Choi, M.; Mukherjee, S.; Yun, J.W. Trigonelline induces browning in 3T3-L1 white adipocytes. Phytother. Res. 2021, 35, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Goenka, S. Two Coffee Diterpenes, Kahweol and Cafestol, Inhibit Extracellular Melanogenesis: An In Vitro Pilot Study. Biologics 2024, 4, 202–217. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Caffeine’s mechanisms of action and its cosmetic use. Skin Pharmacol. Physiol. 2013, 26, 8–14. [Google Scholar] [CrossRef] [PubMed]
- van de Sandt, J.J.M.; van Burgsteden, J.A.; Cage, S.; Carmichael, P.L.; Dick, I.; Kenyon, S.; Korinth, G.; Larese, F.; Limasset, J.C.; Maas, W.J.M.; et al. In vitro predictions of skin absorption of caffeine, testosterone, and benzoic acid: A multi-centre comparison study. Regul. Toxicol. Pharmacol. 2004, 39, 271–281. [Google Scholar] [CrossRef]
- Touitou, E.; Levi-Schaffer, F.; Dayan, N.; Alhaique, F.; Riccieri, F. Modulation of caffeine skin delivery by carrier design: Liposomes versus permeation enhancers. Int. J. Pharm. 1994, 103, 131–136. [Google Scholar] [CrossRef]
- Zhai, X.; Lademann, J.; Keck, C.M.; Muller, R.H. Nanocrystals of medium soluble actives--novel concept for improved dermal delivery and production strategy. Int. J. Pharm. 2014, 470, 141–150. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Software Version 1.6.16. 2010. Available online: https://www.vosviewer.com (accessed on 25 June 2024).
- Aguilar-Toalá, J.E.; Vidal-Limon, A.; Liceaga, A.M. Chapter Six—Nutricosmetics: A new frontier in bioactive peptides’ research toward skin aging. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 104, pp. 205–228. [Google Scholar]
- Liu, S.; Mohri, S.; Manabe, Y.; Ejima, A.; Sato, K.; Sugawara, T. Gly-Pro protects normal human dermal fibroblasts from UVA-induced damages via MAPK-NF-κB signaling pathway. J. Photochem. Photobiol. B Biol. 2022, 237, 112601. [Google Scholar] [CrossRef] [PubMed]
- Rangaraj, S.; Sasikanth, V.; Ammashi, S.; Rathinavel, T. Nutraceuticals and cosmeceuticals: An overview. In Nutraceuticals; Altalh, I.T., Cruz, J.N., Eds.; Academic Press: Amsterdam, The Netherland, 2023; Chapter 4; pp. 99–125. [Google Scholar]
- Ghorbanzadeh, M.; Golmohammadzadeh, S.; Karimi, M.; Farhadian, N. Evaluation of vitamin D3 serum level of microemulsion based hydrogel containing Calcipotriol drug. Mater. Today Commun. 2022, 33, 104409. [Google Scholar] [CrossRef]
- Merritt, J.C.; Richbart, S.D.; Moles, E.G.; Cox, A.J.; Brown, K.C.; Miles, S.L.; Finch, P.T.; Hess, J.A.; Tirona, M.T.; Valentovic, M.A.; et al. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol. Ther. 2022, 238, 108177. [Google Scholar] [CrossRef]
- Vahdat-Lasemi, F.; Kesharwani, P.; Sahebkar, A. Curcumin as a pharmaceutical leader. In Curcumin-Based Nanomedicines as Cancer Therapeutics; Kesharwani, P., Sahebkar, A., Eds.; Academic Press: Cambridge, MA, USA, 2024; Chapter 2; pp. 23–46. [Google Scholar]
- Schoedel, K.A.; Levy-Cooperman, N. Polydrug users, use of cannabinoids and abuse potential: A focus on cannabidiol (CBD). In Cannabis Use, Neurobiology, Psychology, and Treatment; Martin, C.R., Patel, V.B., Preedy, V.R., Eds.; Academic Press: Amsterdam, The Netherland, 2023; Chapter 10; pp. 155–169. [Google Scholar]
- Bo, R.; Zhan, Y.; Wei, S.; Xu, S.; Huang, Y.; Liu, M.; Li, J. Tea tree oil nanoliposomes: Optimization, characterization, and antibacterial activity against Escherichia coli in vitro and in vivo. Poult. Sci. 2023, 102, 102238. [Google Scholar] [CrossRef] [PubMed]
- Cláudia Paiva-Santos, A.; Gama, M.; Peixoto, D.; Sousa-Oliveira, I.; Ferreira-Faria, I.; Zeinali, M.; Abbaspour-Ravasjani, S.; Mascarenhas-Melo, F.; Hamishehkar, H.; Veiga, F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int. J. Pharm. 2022, 618, 121656. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Chen, F.; Liu, L.; Fan, Y. Facile modification of nanochitin in aqueous media for stabilizing tea tree oil based Pickering emulsion with prolonged antibacterial performance. Int. J. Biol. Macromol. 2023, 242, 124873. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas-Melo, F.; Mathur, A.; Murugappan, S.; Sharma, A.; Tanwar, K.; Dua, K.; Singh, S.K.; Mazzola, P.G.; Yadav, D.N.; Rengan, A.K.; et al. Inorganic nanoparticles in dermopharmaceutical and cosmetic products: Properties, formulation development, toxicity, and regulatory issues. Eur. J. Pharm. Biopharm. 2023, 192, 25–40. [Google Scholar] [CrossRef]
- Vijaya, R.; Muthu Mohamed, J. Investigation on potential of nanoemulsion in nanocosmeceuticals. In Nanocosmeceuticals; Das, M.K., Ed.; Academic Press: Amsterdam, The Netherland, 2022; Chapter 11; pp. 319–326. [Google Scholar]
- Zhang, Z.; Ge, M.; Wu, D.; Li, W.; Chen, W.; Liu, P.; Zhang, H.; Yang, Y. Resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles: Preparation, characterization and synergistic anti-inflammatory effects. Carbohydr. Polym. 2024, 332, 121916. [Google Scholar] [CrossRef]
- Ahmadraji, F.; Shatalebi, M.A. Evaluation of the clinical efficacy and safety of an eye counter pad containing caffeine and vitamin K in emulsified Emu oil base. Adv. Biomed. Res. 2015, 4, 10. [Google Scholar] [CrossRef]
- Rawlings, A.V. Cellulite and its treatment. Int. J. Cosmet. Sci. 2006, 28, 175–190. [Google Scholar] [CrossRef]
- Iahtisham Ul, H.; Khan, S.; Sohail, M.; Iqbal, M.J.; Awan, K.A.; Nayik, G.A. Tea tree essential oil. In Essential Oils; Nayik, G.A., Ansari, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2023; Chapter 20; pp. 479–500. [Google Scholar] [CrossRef]
- Martínez Campayo, N.; Goday Buján, J.J.; Fonseca Capdevila, E. Allergic Contact Dermatitis Due to Tea Tree Oil. Actas Dermo-Sifiliográficas (Engl. Ed.) 2020, 111, 787–788. [Google Scholar] [CrossRef]
- Chen, D.; Wan, S.B.; Yang, H.; Yuan, J.; Chan, T.H.; Dou, Q.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Academic Press: Amsterdam, The Netherland, 2011; Volume 53, Chapter 7; pp. 155–177. [Google Scholar]
- Lecumberri, E.; Dupertuis, Y.M.; Miralbell, R.; Pichard, C. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr. 2013, 32, 894–903. [Google Scholar] [CrossRef]
- Sarma, A.; Bania, R.; Das, M.K. Green tea: Current trends and prospects in nutraceutical and pharmaceutical aspects. J. Herb. Med. 2023, 41, 100694. [Google Scholar] [CrossRef]
- Gedik, G.; Ugürlu, T. A Preliminary Screening Study with Dermal Tea Formulations Against 311 nm Ultraviolet B Radiation. J. Cosmet. Sci. 2022, 73, 58–68. [Google Scholar]
- Chaikul, P.; Sripisut, T.; Chanpirom, S.; Ditthawutthikul, N. Anti-skin aging activities of green tea (Camelliasinensis (L) Kuntze) in B16F10 melanoma cells and human skin fibroblasts. Eur. J. Integr. Med. 2020, 40, 101212. [Google Scholar] [CrossRef]
- Albuquerque, P.B.S.; de Oliveira, W.F.; dos Santos Silva, P.M.; dos Santos Correia, M.T.; Kennedy, J.F.; Coelho, L.C.B.B. Skincare application of medicinal plant polysaccharides—A review. Carbohydr. Polym. 2022, 277, 118824. [Google Scholar] [CrossRef]
- Kashyap, N.; Kumari, A.; Raina, N.; Zakir, F.; Gupta, M. Prospects of essential oil loaded nanosystems for skincare. Phytomedicine Plus 2022, 2, 100198. [Google Scholar] [CrossRef]
- Sharma, R.R.; Deep, A.; Abdullah, S.T. Herbal products as skincare therapeutic agents against ultraviolet radiation-induced skin disorders. J. Ayurveda Integr. Med. 2022, 13, 100500. [Google Scholar] [CrossRef]
- Kouassi, M.-C.; Grisel, M.; Gore, E. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids Surf. B Biointerfaces 2022, 217, 112676. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Jiang, Z.; Lin, X.; Wei, X. Application of plant extracts cosmetics in the field of anti-aging. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100014. [Google Scholar] [CrossRef]
- Rosado, C.; Tokunaga, V.K.; Sauce, R.; de Oliveira, C.A.; Sarruf, F.D.; Parise-Filho, R.; Maurício, E.; de Almeida, T.S.; Velasco, M.V.R.; Baby, A.R. Another Reason for Using Caffeine in Dermocosmetics: Sunscreen Adjuvant. Front. Physiol. 2019, 10, 519. [Google Scholar] [CrossRef]
- Lu, Y.-P.; Lou, Y.-R.; Xie, J.-G.; Peng, Q.-Y.; Zhou, S.; Lin, Y.; Shih, W.J.; Conney, A.H. Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis 2007, 28, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-P.; Lou, Y.-R.; Peng, Q.-Y.; Nghiem, P.; Conney, A.H. Caffeine Decreases Phospho-Chk1 (Ser317) and Increases Mitotic Cells with Cyclin B1 and Caspase 3 in Tumors from UVB-Treated Mice. Cancer Prev. Res. 2011, 4, 1118–1125. [Google Scholar] [CrossRef]
- Heffernan, T.P.; Kawasumi, M.; Blasina, A.; Anderes, K.; Conney, A.H.; Nghiem, P. ATR-Chk1 Pathway Inhibition Promotes Apoptosis after UV Treatment in Primary Human Keratinocytes: Potential Basis for the UV Protective Effects of Caffeine. J. Investig. Dermatol. 2009, 129, 1805–1815. [Google Scholar] [CrossRef]
- Otberg, N.; Patzelt, A.; Rasulev, U.; Hagemeister, T.; Linscheid, M.; Sinkgraven, R.; Sterry, W.; Lademann, J. The role of hair follicles in the percutaneous absorption of caffeine. Br. J. Clin. Pharmacol. 2008, 65, 488–492. [Google Scholar] [CrossRef]
- Dhurat, R.; Chitallia, J.; May, T.W.; Jayaraaman, A.M.; Madhukara, J.; Anandan, S.; Vaidya, P.; Klenk, A. An Open-Label Randomized Multicenter Study Assessing the Noninferiority of a Caffeine-Based Topical Liquid 0.2% versus Minoxidil 5% Solution in Male Androgenetic Alopecia. Skin Pharmacol. Physiol. 2017, 30, 298–305. [Google Scholar] [CrossRef]
- Ufomadu, P. Complementary and alternative supplements: A review of dermatologic effectiveness for androgenetic alopecia. Bayl. Univ. Med. Cent. Proc. 2024, 37, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Marotta, J.C.; Patel, G.; Carvalho, M.; Blakeney, S. Clinical Efficacy of a Topical Compounded Formulation in Male Androgenetic Alopecia: Minoxidil 10%, Finasteride 0.1%, Biotin 0.2%, and Caffeine Citrate 0.05% Hydroalcoholic Solution. Int. J. Pharm. Compd. 2020, 24, 69–76. [Google Scholar]
- Samadi, A.; Rokhsat, E.; Saffarian, Z.; Goudarzi, M.M.; Kardeh, S.; Nasrollahi, S.A.; Firooz, A. Assessment of the efficacy and tolerability of a topical formulation containing caffeine and Procapil 3% for improvement of male pattern hair loss. J. Cosmet. Dermatol. 2024, 23, 1492–1494. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.P.; Swink, S.M.; Castelo-Soccio, L. A review of the use of biotin for hair loss. Skin Appendage Disord. 2017, 3, 166–169. [Google Scholar] [CrossRef]
- Tr, P.; Ts, R.; K, S.K.; Prasanna, H. A Comparative Study of Topical Procapil With Platelet-Rich Plasma Therapy Versus Topical Redensyl, Saw Palmetto, and Biotin With Platelet-Rich Plasma Therapy in the Treatment of Androgenetic Alopecia. Cureus 2023, 15, e38696. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Lane, M.E. Topical and transdermal delivery of caffeine. Int. J. Pharm. 2015, 490, 155–164. [Google Scholar] [CrossRef]
- Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S.R.; Chevreau, H.; Elkaïm, E.; Maurin, G.; Horcajada, P.; Serre, C. Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal–Organic Frameworks. Chem. Mater. 2013, 25, 2767–2776. [Google Scholar] [CrossRef]
- Atwi-Ghaddar, S.; Zerwette, L.; Destandau, E.; Lesellier, E. Supercritical Fluid Extraction (SFE) of Polar Compounds from Camellia sinensis Leaves: Use of Ethanol/Water as a Green Polarity Modifier. Molecules 2023, 28, 5485. [Google Scholar] [CrossRef]
- Fonseca, A.P.; Pizzol, C.D.; Vanzo, A.C.; da Silva, G.H.; Facchini, G.; Pinheiro, A.L.T.A.; Eberlin, S.; Maia Campos, P.M.B.G. Antiaging effects of a skin care formulation containing nanoencapsulated antioxidants: A clinical, in vitro, and ex vivo study. J. Cosmet. Dermatol. 2024, 23, 510–524. [Google Scholar] [CrossRef]
- Grigolon, G.; Nowak, K.; Poigny, S.; Hubert, J.; Kotland, A.; Waldschütz, L.; Wandrey, F. From Coffee Waste to Active Ingredient for Cosmetic Applications. Int. J. Mol. Sci. 2023, 24, 8516. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.G.; Piliang, M.P.; Bergfeld, W.F.; Caterino, T.L.; Fisher, B.K.; Sacha, J.P.; Carr, G.J.; Moulton, L.T.; Whittenbarger, D.J.; Schwartz, J.R. Scalp application of antioxidants improves scalp condition and reduces hair shedding in a 24-week randomized, double-blind, placebo-controlled clinical trial. Int. J. Cosmet. Sci. 2021, 43, S14–S25. [Google Scholar] [CrossRef]
- Victoire, A.; Magin, P.; Coughlan, J.; van Driel, M.L. Interventions for infantile seborrhoeic dermatitis (including cradle cap). Cochrane Database Syst. Rev. 2019, 3, Cd011380. [Google Scholar] [CrossRef]
- Kichou, H.; Caritá, A.C.; Gillet, G.; Bougassaa, L.; Perse, X.; Soucé, M.; Gressin, L.; Chourpa, I.; Bonnier, F.; Munnier, E. Efficiency of emulsifier-free emulsions in delivering caffeine and α-tocopherol to human skin. Int. J. Cosmet. Sci. 2023, 45, 329–344. [Google Scholar] [CrossRef]
- Kassem, A.A.; Asfour, M.H.; Abd El-Alim, S.H.; Khattab, M.A.; Salama, A. Topical caffeine-loaded nanostructured lipid carriers for enhanced treatment of cellulite: A 32 full factorial design optimization and in vivo evaluation in rats. Int. J. Pharm. 2023, 643, 123271. [Google Scholar] [CrossRef]
- Saewan, N.; Jimtaisong, A.; Panyachariwat, N.; Chaiwut, P. In Vitro and In Vivo Anti-Aging Effect of Coffee Berry Nanoliposomes. Molecules 2023, 28, 6830. [Google Scholar] [CrossRef] [PubMed]
- Albash, R.; Abdelbari, M.A.; Elbesh, R.M.; Khaleel, E.F.; Badi, R.M.; Eldehna, W.M.; Elkaeed, E.B.; El Hassab, M.A.; Ahmed, S.M.; Mosallam, S. Sonophoresis mediated diffusion of caffeine loaded Transcutol® enriched cerosomes for topical management of cellulite. Eur. J. Pharm. Sci. 2024, 201, 106875. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, E.-R.; El-Meligy, M.A.; Ghaly, Z.S.; Kenawy, M.E.; Kamoun, E.A. Novel Physically-Crosslinked Caffeine and Vitamin C-Loaded PVA/Aloe Vera Hydrogel Membranes for Topical Wound Healing: Synthesis, Characterization and In-Vivo Wound Healing Tests. J. Polym. Environ. 2024, 32, 2140–2157. [Google Scholar] [CrossRef]
Nanocarriers | Highlighted Outcomes | References |
---|---|---|
NLC |
| [68] |
Liposome |
| [69] |
Cerosomes |
| [70] |
Hydrogel |
| [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco-Llamero, C.; Macário, H.F.; Guedes, B.N.; Fathi, F.; Oliveira, M.B.P.P.; Souto, E.B. Bioactives in Nutricosmetics: A Focus on Caffeine from Tea to Coffee. Cosmetics 2024, 11, 149. https://doi.org/10.3390/cosmetics11050149
Blanco-Llamero C, Macário HF, Guedes BN, Fathi F, Oliveira MBPP, Souto EB. Bioactives in Nutricosmetics: A Focus on Caffeine from Tea to Coffee. Cosmetics. 2024; 11(5):149. https://doi.org/10.3390/cosmetics11050149
Chicago/Turabian StyleBlanco-Llamero, Cristina, Hugo F. Macário, Beatriz N. Guedes, Faezeh Fathi, Maria Beatriz P. P. Oliveira, and Eliana B. Souto. 2024. "Bioactives in Nutricosmetics: A Focus on Caffeine from Tea to Coffee" Cosmetics 11, no. 5: 149. https://doi.org/10.3390/cosmetics11050149
APA StyleBlanco-Llamero, C., Macário, H. F., Guedes, B. N., Fathi, F., Oliveira, M. B. P. P., & Souto, E. B. (2024). Bioactives in Nutricosmetics: A Focus on Caffeine from Tea to Coffee. Cosmetics, 11(5), 149. https://doi.org/10.3390/cosmetics11050149