Rice Derivatives in Hair Protecting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hair Treatment
2.3. FT-IR Analysis
2.4. SEM Analysis
2.5. Hair Irradiation
2.6. Stress–Strain Test
2.7. Hair Protection Factor (HPF)
2.8. Polarized Light Microscopy Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. FT-IR Analysis
3.2. SEM Analysis
3.3. Stress–Strain Test
3.4. Hair Protection Factor
3.5. Polarized Light Microscopy Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robbins, C.R. Chemical and Physical Behavior of Human Hair, 4th ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Nacht, S. Sunscreens and Hair. Cosmet. Toilet. 1990, 105, 55–60. [Google Scholar]
- De Galvez, M.V.; Aguilera, J.; Bernabò, J.L.; Sánchez-Roldán, C.; Herrera-Ceballos, E. Human Hair as a Natural Sun Protection Agent: A Quantitative Study. Photochem. Photobiol. 2015, 91, 966–970. [Google Scholar] [CrossRef]
- Dario, M.F.; Baby, A.R.; Velasco, M.V.R. Effects of solar radiation on hair and photoprotection. J. Photochem. Photobiol. B Biol. 2015, 153, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.V.R.; Dias, T.S.C.; Freitas, A.Z.; Vieria Junior, N.D.; Pinto, C.A.S.O.; Kaneko, T.M.; Baby, A.R. Hair fiber characteristics and methods to evaluate hair physical and mechanical properties. Braz. Pharm. Sci. 2009, 45, 153–162. [Google Scholar] [CrossRef]
- Botolho Laurenço, C.; Masquetti Fava, A.L.; Mendes dos Santos, E.; Malvezzi de Macedo, L.; Lacalendola Tundisi, L.; Artem Ataide, J.; Gava Mazzola, P. Brief description of the principles of prominent methods used to study the penetration of materials in to human hair and a review of examples of their use. Int. J. Cosmet. Sci. 2021, 43, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Da Gama, R.M.; Baby, A.R.; Velasco, V.R. In vitro methodologies to evaluate the effects of hair care products on hair fiber. Cosmetics 2017, 4, 2. [Google Scholar] [CrossRef]
- Lichtman, J.W.; Conchello, J.A. Fluorescence microscopy. Nat. Methods 2005, 2, 910–919. [Google Scholar] [CrossRef]
- Tinoco, A.; Gonçalves, J.; Silva, C.; Laureiro, A.; Gomes, A.C.; Cavaco-Paulo, A.; Ribeiro, A. Keratin-based particles for protection and restoration of hair properties. Int. J. Cosmet. Sci. 2018, 40, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ji, C.; Collins, L.Z.; Hoptroff, M.; Jassen, H.G. Visualization of zinc phyrithione particles deposited on the scalps from a shampoo by tape-strip sampling and scanning electron microscopy/energy dispersive X-ray spectroscopy measurement. Int. J. Cosmet. Sci. 2018, 40, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Takashi, T. A highly resistant structure between the cuticle and the cortex of human hair III: Characterization of the structure CARB. Int. J. Cosmet. Sci. 2021, 43, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Grasvenor, A.J.; Deb-Choudhury, S.; Middlewood, P.G.; Thomas, A.; Lee, E.; Vernon, J.A.; Woods, J.L.; Taylor, C.; Bell, F.I.; Clerens, S. The physical and chemical disruption of human hair after bleaching-studies by transmission electron microscopy and redox proteomics. Int. J. Cosmet. 2018, 40, 536–548. [Google Scholar] [CrossRef] [PubMed]
- McMullen, R.L.; Zhang, G. Investigation of the internal structure of human hair with atomic force microscopy. J. Cosmet. Sci. 2020, 71, 117–131. [Google Scholar]
- Seshadri, I.P.; Bhushan, B. Effect of ethnicity and treatments on in situ tensile response and morphological changes of human hair characterized by atomic force microscopy. Acta Mater. 2008, 56, 3585–3597. [Google Scholar] [CrossRef]
- Pavani, C.; Severino, D.; Villa Dos Santos, N.; Chiarelli-Neto, O.; Baptista, M.S. Spectroscopy as a tool to evaluate hair damage and protection. Int. J. Cosmet. Sci. 2018, 40, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.R.; Jang, W.; Yu, S.I.; Lee, B.H.; Kwon, O.S.; Shin, K. FT-IR Microspectroscopic Imaging of Cross-Sectioned Human Hair during a Bleaching Process. J. Cosmet. Dermatol. Sci. Appl. 2016, 6, 181–190. [Google Scholar] [CrossRef]
- Kuzuhara, A. Internal structural changes in keratin fibers resulting from combined hair waving and stress relaxation treatments: A Raman spectroscopic investigation. Int. J. Cosmet. Sci. 2016, 38, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Grundman, C.B. Investigating prevention of UV damage to hair using Raman spectroscopy. J. Cosmet. Sci. 2018, 69, 357–362. [Google Scholar]
- Kuzuhara, A. Raman spectroscopic of L-phenylalanine and hydrolyzed eggwhite protein into keratin fibers. J. Appl. Polym. Sci. 2011, 122, 2680–2689. [Google Scholar] [CrossRef]
- Scanavez, C.; Zoega, M.; Barbosa, A.; Joekes, I. Measurement of hair luster by diffuse reflectance spectrophotometry. J. Cosmet. Sci. 2000, 55, 289–302. [Google Scholar]
- Haake, H.M.; Lagranè, H.; Brands, A.; Eisfeld, W.; Melchior, D. Determination of the substantivity of emollients to human hair. J. Cosmet. Sci. 2007, 58, 443–450. [Google Scholar]
- Evans, A.O.; Marsh, J.M.; Wickett, R.R. The uptake of water hardness metald by human hair. J. Cosmet. Sci. 2011, 62, 383–391. [Google Scholar]
- Lima, C.R.R.; Almeida, M.M.; Velasco, M.V.R.; Matos, J.R. Thermoanalytical characterization study of hair from different ethnicities. J. Therm. Anal. Calorim. 2016, 123, 2321–2328. [Google Scholar] [CrossRef]
- Da Gama, R.M.; Balagh, T.S.; França, S.; Sà-Dias, T.C.; Bedin, V.; Baby, A.R.; Velasco, M.V.R. Thermal analysis of hair treated with oxidative hair dye under influence of conditioners agents. J. Therm. Anal. Calorim. 2011, 106, 339–405. [Google Scholar] [CrossRef]
- Wortmann, F.J.; Springob, C.; Sendelbach, G. Investigations of cosmetically treated human hair by different scanning calorimetry in water. J. Cosmet. Sci. 2002, 53, 219–228. [Google Scholar] [PubMed]
- Blanco, B.; Durost, B.; Myers, R. Gel permeation chromatography: An effective method of quantifying the adsorption of cationic polymers by bleached hair. J. Soc. Cosmet. Chem. 1997, 48, 127–131. [Google Scholar]
- Mintz, G.R.; Reinhart, G.M.; Lent, B. Relationship between collagen hydrolysate molecular weight and peptide substantivity hair. J. Soc. Cosmet. Chem. 1991, 42, 35–44. [Google Scholar]
- McMullen, R.L.; Scless, T.; Kulcsar, L.; Foltis, L.; Gillece, T. Evaluation of the surface properties of hair with acoustic emission analysis. Int. J. Cosmet. Sci. 2021, 43, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Puccetti, G.; Kulcsar, L. Hair surface quality: Laser scattering as a tool for characterizing the surface condition and deposits from shampoo and conditioners. Int. J. Cosmet. Sci. 2020, 42, 89–98. [Google Scholar] [CrossRef]
- New, S.; Daniels, G.; Gummer, C.L. Measuring the frequency of consumer hair combing and magnitude of combing forces on individual hairs in a tress and the implications for product evaluation and claims substantiation. Int. J. Cosmet. Sci. 2018, 40, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Burlando, B.; Cornara, L. Therapeutic properties of rice constituted and derivatives (Oryza sativa L.): A review update. Trends Food Sci. Technol. 2014, 40, 82–98. [Google Scholar] [CrossRef]
- Punia, S.; Kumar, M.; Siroha, A.K.; Purewal, S.S. Rice Bran Oil: Emeging Trends in Extraction, Health Benefit, and Its Industrial Application. Rice Sci. 2021, 28, 217–232. [Google Scholar] [CrossRef]
- Garba, U.; Singanusong, R.; Jiamyangyuen, S.; Thongsook, T. Extraction and utilization of rice bran oil: A review extraction and utilization of rice bran oil. In Proceedings of the 4th International Conference on Rice Bran Oil 2017 (ICRBO 2017). Rice Bran Oil Application: Pharma-Cosmetics, Nutraceuticals and Food, Bangkok, Thailand, 24–25 August 2017. [Google Scholar]
- Manosroi, A.; Ruksiriwanich, W.; Abe, M.; Sakai, H.; Manosroi, W.; Manosroi, J. Biological activities of the rice bran extract and physical characteristics of its entrapment in niosomes by supercritical carbon dioxide fluid. J. Supercrit. Fluids 2010, 54, 137–144. [Google Scholar] [CrossRef]
- Hashemi, K.; Pham, C.; Sung, C.; Mamaghami, T.; Juhasz, M.; Mesinkovska, N.A. Systematic Review: Application of Rice Products for Hair Growth. J. Drugs Dermatol. 2022, 21, 177–185. [Google Scholar] [CrossRef]
- Choi, J.S.; Jeon, M.H.; Moon, W.S.; Moon, J.N.; Cheon, E.J.; Kim, J.W.; Jung, S.K.; Ji, Y.H.; Son, S.W.; Kim, M.R. In Vivo Hair Growth-Promoting Effect of Rice Bran Extract Prepared by Supercritical Carbon Dioxide Fluid. Biol. Pharm. Bull. 2014, 37, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Kim, C.J.; You, J.M.; Lee, K.W.; Kim, C.T.; Chung, S.H.; Tae, B.S. Effect of Roasting Temperature and Time on the Chemical Composition of Rice Germ Oil. J. Am. Oil Chem. Soc. 2002, 79, 413–418. [Google Scholar] [CrossRef]
- Kobayashi, M.; Nakagawa, S.; Nakamura, T.; Tsuno, T. Skin improvement effects of phytosterol ester derived from rice bran. J. Food Sci. Nutr. Res. 2023, 6, 17–23. [Google Scholar] [CrossRef]
- Pawar, S.K.; Vavia, P.R. Rice germ oil as multifunctional excipient in preparation of self-microemulsifying drug delivery system (SMFDDS) of tacrolimus. AAPS PharmSciTech 2012, 13, 254–261. [Google Scholar] [CrossRef] [PubMed]
- ISO 105-B02:2014; Textiles – Test for colour fastness – Part B02: Colour fastness to artificial light: Xenon arc fading lamp test. ISO: Geneva, Switzerland.
- Bayak, R.; Meyer, C.F.; Kass, G.S. Elasticity and Tensile Properties of Human Hair. I Single Fiber Test Method. J. Soc. Cosm. Chem. 1969, 20, 615–626. [Google Scholar]
- Bayak, R.; Meyer, C.F.; Kass, G.S. Elasticity and Tensile Properties of Human Hair. II. Light Radiation Effects. J. Soc. Cosmet. Chem. 1971, 22, 667–678. [Google Scholar]
- Oldenbourg, R. Polarized light microscopy: Principles and practice. Cold Spring Harb. Protoc. 2013, 2013, pdb-top078600. [Google Scholar] [CrossRef]
- Pienpinijthama, P.; Thammacharoen, C.; Naranitad, S.; Ekgasit, S. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 197, 230–236. [Google Scholar] [CrossRef]
- Boll, M.S.; Doty, K.C.; Wickenheiser, R.; Lednew, I.K. Differentiation of hair using ATR FT-IR spectroscopy: A statistical classification of dye and non dyed hairs. Forensic Chem. 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Cloete, K.J.; Smit, Z.; Gianoncelli, A. Multidimensional Profiling of Human Body Hairs Using Qualitative and Semi-Quantitative Approaches with SR-XRF, ATR FT-IR, DSC, and SEM-EDX. Int. J. Mol. Sci. 2023, 24, 4166. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.; Anex, D.S.; Jones, A.D.; Hart, B.R. Automated analysis of scanning electron microscopic images for assessment of hair surface damage. R. Soc. Open. Sci. 2020, 7, 191438. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Bernardi, S.; Continenza, M.A.; Vincenti, E.; Antonouli, S.; Torge, D.; Macchiarelli, G. Scanning Electron Microscopy Approach for Evaluation of Hair Dyed with Lawsonia inermis Powder: In vitro Study. Int. J. Morphol. 2020, 38, 96–100. [Google Scholar] [CrossRef]
- Davis, C.; Khofar, P.N.A.; Karim, U.K.A.; Rashid, R.A.; Mahat, M.M.; Halim, M.I.A. Critical assessment on structural analysis of scalp hair using scanning electron microscope (SEM) and compound microscope. Mater. Today Proc. 2020, 29, 244–249. [Google Scholar] [CrossRef]
- Hearle, J.W.S. A critical review of the structural mechanics of wool and hair fibers. Int. J. Biol. Macromol. 2000, 27, 123–138. [Google Scholar] [CrossRef]
- Goldsmith, L.A.; Baden, H.P. The mechanical properties of hair I. The dynamic sonic modulus. J. Investig. Dermatol. 1970, 55, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, F.J.; Quadflieg, J.M.; Wortmann, G. The information content of tensile tests of human hair (wet) is limited: Variables mainly cluster in just two principal components. J. Mech. Behav. Biomed. Mater. 2022, 129, 105145. [Google Scholar] [CrossRef]
- Evans, T. Measuring Hair Strength-Part 1: Stress-Strain Curves. Cosmet. Toilet. 2013, 128, 590–594. [Google Scholar]
- Coderch, L.; Alonso, C.; Garcìa, M.T.; Pérez, L.; Martì, M. Hair lipid structure: Effect of surfactants. Cosmetics 2023, 10, 107. [Google Scholar] [CrossRef]
- Ferri, A.; Franzoia, R.; Martínez-Sánchez, G. Hair Analysis by Polarized Light Microscopy, a New Tool in Medical Research. J. Toxicol. Cur. Res. 2018, 2, 004. [Google Scholar] [CrossRef]
- Adya, K.A.; Inamadar, A.C.; Palit, A.; Shivanna, R.; Deshmukh, N.S. Light Microscopy of the Hair: A Simple Tool to “Untangle” Hair Disorders. Int. J. Trichol. 2013, 3, 46–56. [Google Scholar] [CrossRef]
- Valente, N.Y.S.; Machado, M.C.M.R.; Boggio, P.; Alves, A.C.F.; Bergonse, F.N.; Casella, E.; Vascocelos, D.M.; Grumach, A.S.; de Oliveria, Z.N.P. Polarized light microscopy of hair shafts aids in the differential diagnosis of Chédiak-Higashi and Griscelli-Prunieras syndrome. Clinics 2006, 61, 327–332. [Google Scholar] [CrossRef]
- Wallace, M.P.; de Berker, D.A. Hair diagnoses and signs: The use of dermatoscopy. Clin. Exp. Dermatol. 2010, 35, 41–46. [Google Scholar] [CrossRef]
- Marliani, A.; Gigli, P.; Salin, M. Trichological microscopy in polarized light. J. Eur. Acad. Dermatol. Venreol. 1997, 1001, S126. [Google Scholar] [CrossRef]
- Marliani, A.; Gigli, P.; Antognini, G.; Tartù, S.; Bini, F.; Agostinacchio, G. Microscopia Tricologica in Luce Polarizzata; Società Italiana di Tricologia: Firenze, Italy, 2015. [Google Scholar]
Sample | Diameter (μm) | Extension (%) | Breaking Point Force (cN) | Tex | Tenacity (cN/Tex) |
---|---|---|---|---|---|
NT hair | 80.00 ± 11.32 | 55.77 ± 13.29 | 56.33 ± 17.61 | 6.69 | 8.41 ± 1.18 |
NTI hair | 88.57 ± 12.95 | 57.15 ± 7.49 | 72.35 ± 15.82 | 8.23 | 8.98 ± 0.97 |
Hair with conditioner C | 84.69 ± 8.67 | 60.71 ± 6.83 | 66.70 ± 14.31 | 7.44 | 8.96 ± 0.81 |
I hair with conditioner C | 81.20 ± 10.14 | 53.80 ± 5.76 | 65.18 ± 11.67 | 6.88 | 9.68 ± 1.15 |
Hair with conditioner GX-N | 88.80 ± 8.08 | 60.53 ± 5.59 | 69.35 ± 7.83 | 8.02 | 8.64 ± 1.14 |
I hair with conditioner GX-N | 89.24 ± 7.07 | 60.21 ± 5.84 | 70.65 ± 17.24 | 8.25 | 8.56 ± 1.53 |
Hair with conditioner RSE | 89.87 ± 8.52 | 64.52 ± 5.53 | 69.90 ± 17.53 | 8.38 | 8.56 ± 2.36 |
I hair with conditioner RSE | 85.69 ± 7.07 | 57.65 ± 4.32 | 74.28 ± 20.24 | 7.72 | 9.76 ± 13.25 |
Hair with conditioner PRO-15 | 82.99 ± 10.77 | 62.92 ± 8.03 | 63.98 ± 14.03 | 7.20 | 9.16 ± 1.80 |
I hair with conditioner PRO-15 | 81.73 ± 7.66 | 55.94 ± 4.73 | 67.55 ± 13.63 | 6.93 | 9.84 ± 1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centini, M.; Signori, G.; Francescon, F.; Tsuno, F.; Oguro, T.; Anselmi, C. Rice Derivatives in Hair Protecting. Cosmetics 2023, 10, 163. https://doi.org/10.3390/cosmetics10060163
Centini M, Signori G, Francescon F, Tsuno F, Oguro T, Anselmi C. Rice Derivatives in Hair Protecting. Cosmetics. 2023; 10(6):163. https://doi.org/10.3390/cosmetics10060163
Chicago/Turabian StyleCentini, Marisanna, Giulia Signori, Fabrizio Francescon, Fumi Tsuno, Tomoki Oguro, and Cecilia Anselmi. 2023. "Rice Derivatives in Hair Protecting" Cosmetics 10, no. 6: 163. https://doi.org/10.3390/cosmetics10060163
APA StyleCentini, M., Signori, G., Francescon, F., Tsuno, F., Oguro, T., & Anselmi, C. (2023). Rice Derivatives in Hair Protecting. Cosmetics, 10(6), 163. https://doi.org/10.3390/cosmetics10060163