Research Progress of Mine Ecological Restoration Technology
Abstract
:1. Introduction
2. Analysis Method
2.1. Data Source
2.2. Statistical Method
3. Research Status and Hotspot Analysis of Mine Ecological Restoration Technology Based on CiteSpace
3.1. The Annual Distribution of the Number of Published Papers
3.2. Journal Analysis
3.3. Keyword Analysis
4. Mine Ecological Restoration Technology
4.1. Physical Remediation Technology
4.2. Chemical Remediation Technology
4.3. Bioremediation Technology
4.4. Integrated Remediation Technology
Technology Type | Mine Type | Specific Recovery Measures | Recovery Situation | References |
---|---|---|---|---|
Physical–chemical–biological | P | Physical: land leveling, soil replacement Chemical: compound fertilizers Biological: plant, microbial | 2020-22 Ecological Remediation Effect Index from 48.40 to 93.23 | [93] |
Physical-–biological | Coal | Physical: slope reinforcement fiber blanket covering Biological: sheep manure, mixed seeding of grass species | Overall vegetation coverage increased to about 80% and stabilized within five years | [94] |
Physical–biological | Al | Physical: topography reshaping Biological: natural succession | Reforestation effectively covers soil within seven years | [83] |
Chemical–biological | Cu and Pb-Zn | Chemical: activated carbon Biological: Lolium perenne | Water holding capacity of Cu and Pb-Zn tailings were 47.33% and 47.67% | [60] |
Chemical–biological | Rare earth | Chemical: organic amendments Biological: microbial | Soil nutrients and enzyme activity are close or exceeds the undeveloped land within five years | [88] |
Plant–microbial | Cd | Plant: Brassica juncea Microbial: Penicillium oxalicum strain ZP6 | Combination removal rate of 88.75% | [95] |
4.5. Monitoring and Evaluation Technology
5. Challenges and Prospects
5.1. Challenges
5.2. Prospects
- (1)
- Intelligent and information
- (2)
- Technological innovation and integration
- (3)
- Green materials and circular economy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, D.W.; Li, Q.; Yan, B.Z.; Zhang, Z.S.; Li, Y. Ecological risk assessment and spatial distribution of heavy metal in an abandoned mining area, a case study of liaoyang pyrite mining area in china: Implications for the environmental remediation of mine sites. Pol. J. Environ. Stud. 2023, 33, 1965–1980. [Google Scholar] [CrossRef] [PubMed]
- Thakur, T.K.; Swamy, S.L.; Dutta, J.; Thakur, A.; Mishra, A.; Sarangi, P.K.; Kumar, A.; Almutairi, B.O.; Kumar, R. Assessment of land use dynamics and vulnerability to land degradation in coal-mined landscapes of central India: Implications for ecorestoration strategies. Front. Environ. Sci. 2024, 12, 19. [Google Scholar] [CrossRef]
- Nemati, B.; Baneshi, M.M.; Akbari, H.; Dehghani, R.; Mostafaii, G. Phytoremediation of pollutants in oil-contaminated soils by Alhagi camelorum: Evaluation and modeling. Sci. Rep. 2024, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.C.; Li, X.Q.; Ma, J.F.; Gao, M.; Bai, Z.X.; Liu, C. Heavy metal(loid)s contamination assessment of soils in Shendong coal base of the Kuye River basin, China: Spatial distribution, source identification and ecological risk. Environ. Earth Sci. 2023, 82, 13. [Google Scholar] [CrossRef]
- Millán-Becerro, R.; León, R.; Romero-Matos, J.; Moreno-González, R.; Pérez-López, R. Towards circular and sustainable restoration of a deeply polluted river basin: The Odiel River catchment (SW Spain). Sci. Total Env. 2024, 907, 169379. [Google Scholar] [CrossRef]
- He, Y.J.; Zhang, Q.; Wang, W.J.; Hua, J.; Li, H.S. The multi-media environmental behavior of heavy metals around tailings under the influence of precipitation. Ecotox Env. Safe 2023, 266, 10. [Google Scholar] [CrossRef]
- Zhu, X.J.; Ning, Z.Y.; Cheng, H.; Zhang, P.F.; Sun, R.; Yang, X.Y.; Liu, H. A novel calculation method of subsidence waterlogging spatial information based on remote sensing techniques and surface subsidence prediction. J. Clean. Prod. 2022, 335, 16. [Google Scholar] [CrossRef]
- Huang, Z.L.; Fu, H.; Lai, G.F.; Mo, Y.Y.; Zeng, S.Y.; Zhou, X.H.; Huang, Y.; Tao, S.D. Pollution, fractionation and potential risks of V and Cd in soils from stone coal mines in Heshan region, Yiyang City. Environ. Earth Sci. 2024, 83, 12. [Google Scholar] [CrossRef]
- Liao, K.J.; Chen, C.Q.; Ye, W.Y.; Zhu, J.; Li, Y.; She, S.J.; Wang, P.P.; Tao, Y.; Lv, A.; Wang, X.Y.; et al. The adaptability, distribution, ecological function and restoration application of biological soil crusts on metal tailings: A critical review. Sci. Total Env. 2024, 927, 13. [Google Scholar] [CrossRef]
- Gao, R.; Ai, N.; Liu, G.Q.; Liu, C.H.; Qiang, F.F.; Zhang, Z.Y.; Xiang, T.; Zang, K.X. The Coupling Relationship between Herb Communities and Soil in a Coal Mine Reclamation Area after Different Years of Restoration. Forests 2022, 13, 15. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Wang, L.P.; Ma, J.; Hua, Z.Y.; Yang, Y.J.; Chen, F. Assessment of carbon sequestration potential of mining areas under ecological restoration in China. Sci. Total Env. 2024, 921, 10. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Xiao, W.Q.; Xiong, Z.; Sha, A.J.; Luo, Y.Y.; Chen, X.D.; Li, Q. Assembly Mechanism of Rhizosphere Fungi in Plant Restoration in Lead Zinc Mining Areas. Genes 2024, 15, 1398. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.M.; Dinerstein, E.; Powell, G.V.N.; Wikramanayake, E.D. Conservation biology for the biodiversity crisis. Conserv. Biol. 2002, 16, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, K.; Clark-Ioannou, S.; Saunders, B.J.; Majer, J.; Bateman, P.W.; Bunce, M.; Nevill, P. Mining exploration infrastructure affects biophysical habitat characteristics and ground-dwelling arthropod communities. Biodivers. Conserv. 2024, 33, 2465–2486. [Google Scholar] [CrossRef]
- Du, K.; Xie, J.J.; Xi, W.Q.; Wang, L.; Zhou, J.; Lezzerini, M. Construction Practices of Green Mines in China. Sustainability 2024, 16, 22. [Google Scholar] [CrossRef]
- Luo, P.J.; Zhang, M.C.; Zhou, S.Y. Research on the Reconstruction of Aquatic Vegetation Landscape in Coal Mining Subsidence Wetlands Based on Ecological Water Level. Water 2024, 16, 17. [Google Scholar] [CrossRef]
- Lian, X.G.; Li, Y.; Wang, X.B.; Shi, L.F.; Xue, C.H. Research on Identification and Location of Mining Landslide in Mining Area Based on Improved YOLO Algorithm. Drones 2024, 8, 18. [Google Scholar] [CrossRef]
- Su, D.H.; Zhou, J.W.; Feng, H.B.; Li, R.; Zheng, X.M.; Zhu, Y.; Han, X.; Hou, Q.Q. Distribution and transformation characteristics of water vapor field in the fissured rock mass and its ecological significance. J. Hydrol. 2024, 631, 10. [Google Scholar] [CrossRef]
- Gao, N.; Liang, W.; Gou, F.; Liu, Y.; Fu, B.J.; Lue, Y.H. Assessing the impact of agriculture, coal mining, and ecological restoration on water sustainability in the Mu Us Sandyland. Sci. Total Env. 2024, 929, 11. [Google Scholar] [CrossRef]
- Garate-Quispe, J.; Canahuire-Robles, R.; Alarcón-Aguirre, G.; Dueñas-Linares, H.; Roman-Dañobeytia, F. Changes in floristic and vegetation structure in a chronosequence of abandoned gold-mining lands in a tropical Amazon forest. Heliyon 2024, 10, 15. [Google Scholar] [CrossRef]
- Feng, H.B.; Zhou, J.W.; Zhou, A.G.; Su, D.H.; Han, X.; Xiong, R.M. Co-evolution mechanism of grassland degradation and its belowground habitat under the influence of coal mining activities. Catena 2024, 241, 12. [Google Scholar] [CrossRef]
- Lin, Y.M.; Xu, S.T.; Zhou, Y.H.; Yang, R.C. Satisfaction evaluation of ecological restoration in abandoned mines based on the residents’ perception: A case study in Ganzhou, Jiangxi. Sci. Rep. 2024, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Tibbett, M. Post-mining ecosystem reconstruction. Curr. Biol. 2024, 34, R387–R393. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Ou, Q.; Wang, H.; Dai, X.; Chen, Y.; Luo, Y.; Yao, H.; Ouyang, D.; Li, Z.; Wang, Z. Organic–inorganic composite modifiers enhance restoration potential of Nerium oleander L. to lead–zinc tailing: Application of phytoremediation. Env. Sci. Pollut. R. 2023, 30, 56569–56579. [Google Scholar] [CrossRef]
- He, L.; Su, R.; Chen, Y.; Zeng, P.; Du, L.; Cai, B.; Zhang, A.; Zhu, H. Integration of manganese accumulation, subcellular distribution, chemical forms, and physiological responses to understand manganese tolerance in Macleaya cordata. Env. Sci. Pollut. R. 2022, 29, 39017–39026. [Google Scholar] [CrossRef]
- Su, R.; Xie, T.; Yao, H.; Chen, Y.; Wang, H.; Dai, X.; Wang, Y.; Shi, L.; Luo, Y. Lead responses and tolerance mechanisms of Koelreuteria paniculata: A newly potential plant for sustainable phytoremediation of Pb-contaminated soil. Int. J. Environ. Res. Public. Health 2022, 19, 14968. [Google Scholar] [CrossRef]
- Su, R.; Wang, Y.; Huang, S.; Chen, R.; Wang, J. Application for ecological restoration of contaminated soil: Phytoremediation. Int. J. Environ. Res. Public. Health 2022, 19, 13124. [Google Scholar] [CrossRef]
- Gastauer, M.; Pinheiro, T.; Caldeira, C.F.; Ramos, S.J.; Coelho, R.R.; Fonseca, D.S.; Tyski, L.; Cardoso, A.L.D.; Neto, C.D.C.; Guimara, L.; et al. Large-scale forest restoration generates comprehensive biodiversity gains in an Amazonian mining site. J. Clean. Prod. 2024, 443, 10. [Google Scholar] [CrossRef]
- Worlanyo, A.S.; Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2021, 279, 16. [Google Scholar] [CrossRef]
- Zhao, D.; Hou, H.P.; Liu, H.Y.; Wang, C.; Ding, Z.Y.; Xiong, J.T. Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi. Land. 2023, 12, 14. [Google Scholar] [CrossRef]
- Zhu, Q.H. Review of Pingliang’s natural resources work in 2024: Ecological restoration heals ‘Scars’ and abandoned mines rejuvenate. Pingliang City Natural Resources Bureau, 20 January 2025. [Google Scholar]
- Han, L.; Zhai, Y.M.; Chen, R.; Fan, Y.M.; Liu, Z.; Zhao, Y.H.; Li, R.S.; Xia, L.F. Characteristics of soil arsenic contamination and the potential of pioneer plants for arsenic remediation in gold mine tailings. Toxics 2023, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.J.; Yin, M.; Yang, S.L.; Wang, X.Y.; Chen, J.; Miao, D.R.; Yin, G.S.; Zhai, S.H.; Su, Y.; Wu, C.; et al. Assessment of metal residues in soil and evaluate the plant accumulation in copper mine tailings of Dongchuan, Southwest China. Front. Plant Sci. 2025, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Gu, Y.Z.; Cheng, Q.; Zhao, Y.X.; Hao, X.W.; Zhang, P.F.; Guo, S.Z.; Wang, Y.; Liu, X.Y.; Shen, X.H. Biological soil crusts enhance nutrient availability and potential soil functions in waste dump soils. Plant Soil 2025, 118, 21. [Google Scholar] [CrossRef]
- Xu, H.; Liu, J.; Huang, N.; Yu, A.Q.; Li, J.Y.; Li, Q.; Yang, Q.A.; Long, L.L. Precision Remediation of Mining Soils through On-Site Investigation and Large-Scale Synthesized Ferrosilicate. Sustainability 2024, 16, 14. [Google Scholar] [CrossRef]
- Wu, X.Y. Mine rehabilitation achieves a green transformation. Hainan Daily, 18 April 2025. [Google Scholar]
- Feng, Z.J.; Hu, Z.Q.; Zhang, X.; Zhang, Y.H.; Cui, R.H.; Lu, L. Integrated mining and reclamation practices enhance sustainable land use: A case study in Huainan Coalfield, China. Land 2023, 12, 15. [Google Scholar] [CrossRef]
- Padró, J.C.; Cardozo, J.; Montero, P.; Ruiz-Carulla, R.; Alcañiz, J.M.; Serra, D.; Carabassa, V. Drone-based identification of erosive processes in open-pit mining restored areas. Land 2022, 11, 13. [Google Scholar] [CrossRef]
- Song, R.B. Fengdu shines! Oriental Hope Cement Factory was selected as one of the first typical cases of ecological restoration of mines in the Ministry of Natural Resources. Chongqing Daily, 22 October 2024. [Google Scholar]
- Xiang, S.B. Suggestions for high-quality ecological restoration of mining areas to strengthen Ankang’s ecological advantages. Ankang Municipal Ecological Environment Bureau, 9 August 2024. [Google Scholar]
- Pan, X.L.; Yan, E.J.; Cui, M.; Hua, W.N. Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. J. Informetr. 2018, 12, 481–493. [Google Scholar] [CrossRef]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.W.; Li, E.W.; Zhu, Y.F.; Cai, H.Z.; Xia, S.S.; Kong, C.C. Effects of cubic ecological restoration of mining wasteland and the preferred restoration scheme. Sci. Total Env. 2022, 851, 12. [Google Scholar] [CrossRef]
- Lin, Y.; Jiao, Y.A.; Zhao, M.F.; Wang, G.J.; Wang, D.M.; Xiao, W.; Li, H.J.; Xu, Z.; Jiang, Y.Q. Ecological restoration of wetland polluted by heavy metals in xiangtan manganese mine area. Processes 2021, 9, 15. [Google Scholar] [CrossRef]
- Zhao, S.W.; Qin, L.Y.; Wang, L.F.; Sun, X.Y.; Yu, L.; Wang, M.; Chen, S.B. Soil bacterial community responses to cadmium and lead stabilization during ecological restoration of an abandoned mine. Soil. Use Manag. 2022, 38, 1459–1469. [Google Scholar] [CrossRef]
- Wang, H.Z.; Huang, Q.; Chen, C. Ecological management and land rehabilitation in mining areas from the perspective of actor-network theory-A case study of lizuizi coal mine in China. Land 2022, 11, 20. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Geng, C.X.; Wang, L.; Zheng, T.T.; Jiang, Q.H.; Yang, T.; Liu, Y.Q.; Wang, Z. Water conservation and ecological water requirement prediction of mining area in arid region based on RS-GIS and InVEST: A case study of bayan obo mine in Baotou, China. Sustainability 2023, 15, 17. [Google Scholar] [CrossRef]
- Ma, T.F.; Luo, H.J.; Huang, K.B.; Pan, Y.; Tang, T.; Tao, X.Q.; Lu, G.N. Integrated ecological risk assessment of heavy metals in an oil shale mining area after restoration. J. Environ. Manag. 2021, 300, 10. [Google Scholar] [CrossRef]
- Han, C.W.; Gao, Z.W.; Wu, Z.H.; Huang, J.; Liu, Z.Y.; Zhang, L.; Zhang, G.G. Restoration of damaged ecosystems in desert steppe open-pit coal mines: Effects on soil nematode communities and functions. Land Degrad. Dev. 2021, 32, 4402–4416. [Google Scholar] [CrossRef]
- Ugrina, M.; Juric, A. Current trends and future perspectives in the remediation of polluted water, soil and air-A review. Processes 2023, 11, 39. [Google Scholar] [CrossRef]
- Bazaluk, O.; Petlovanyi, M.; Sai, K.; Chebanov, M.; Lozynskyi, V. Comprehensive assessment of the earth’s surface state disturbed by mining and ways to improve the situation: Case study of Kryvyi Rih Iron-ore Basin, Ukraine. Front. Environ. Sci. 2024, 12, 24. [Google Scholar] [CrossRef]
- Shi, W.T.; Wang, J.M.; Li, X.; Xu, Q.S.; Jiang, X.Y. Multi-fractal characteristics of reconstructed landform and its relationship with soil erosion at a large opencast coal-mine in the loess area of China. Geomorphology 2021, 390, 11. [Google Scholar] [CrossRef]
- Du, T.; Wang, D.M.; Bai, Y.J.; Zhang, Z.Z. Optimizing the formulation of coal gangue planting substrate using wastes: The sustainability of coal mine ecological restoration. Ecol. Eng. 2020, 143, 10. [Google Scholar] [CrossRef]
- Song, P.P.; Xu, D.; Yue, J.Y.; Ma, Y.C.; Dong, S.J.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total Environ. 2022, 838, 18. [Google Scholar] [CrossRef]
- Chen, Z.C.; Qin, H.; Zhang, X.F.; Xue, H.Z.; Wang, S.D.; Zhang, H.B. The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area. Remote Sens. 2024, 16, 26. [Google Scholar] [CrossRef]
- Zuo, L.Y. Fuling: ‘Mechanical Sand Control’ technology turns mines into fertile fields. Chongqing Daily, 24 July 2024. [Google Scholar]
- Lu, S.; Zhong, X.T. Case study of ecological restoration of abandoned mines in Guoposhan, Hezhou. Guangxi Zhuang Autonomous Region Department of Natural Resources, 10 January 2022. [Google Scholar]
- Merino-Martín, L.; Commander, L.; Mao, Z.; Stevens, J.C.; Miller, B.P.; Golos, P.J.; Mayence, C.E.; Dixon, K. Overcoming topsoil deficits in restoration of semiarid lands: Designing hydrologically favourable soil covers for seedling emergence. Ecol. Eng. 2017, 105, 102–117. [Google Scholar] [CrossRef]
- Jin, L.Q.; Li, X.L.; Sun, H.F.; Wang, J.T.; Zhang, J.; Zhang, Y.F. Effects of restoration years on vegetation and soil characteristics under different artificial measures in alpine mining areas, West China. Sustainability 2022, 14, 18. [Google Scholar] [CrossRef]
- Xiong, J.; Song, J.C.; Zhao, M.M.; Lu, X.B.; Chen, Y.J.; Feng, W.L.; Qiao, Y.N.; Li, W. Synergistic ecological remediation of tailings in high altitude ecologically fragile areas by ryegrass (Lolium perenne L.) and activated carbon. Int. J. Phytoremediat. 2025, 27, 949–957. [Google Scholar] [CrossRef]
- O’Brien, P.L.; DeSutter, T.M.; Ritter, S.S.; Casey, F.X.M.; Wick, A.F.; Khan, E.; Matthees, H.L. A large-scale soil-mixing process for reclamation of heavily disturbed soils. Ecol. Eng. 2017, 109, 84–91. [Google Scholar] [CrossRef]
- Li, P.Y.; Yu, J.W.; Zhu, W.G.; Li, Y.J.; Gao, P.; Han, Y.X.; Bai, L.M. An innovative process for recovery of ilmenite using mineral phase transformation followed by magnetic separation. Adv. Powder Technol. 2024, 35, 10. [Google Scholar] [CrossRef]
- Chen, J.Y.; Liu, J.R.; Hu, M.Q.; Liu, J.Y.; Yu, Y.Y.; Zhou, Y.C.; Bao, N.S.; Han, X.Y.; Zhao, X.; Guo, F. Potential and characteristics of heavy metals electrokinetic removal from the copper-zinc mine tailings: Study on the simulated and actual tailings. Chem. Eng. J. 2024, 496, 9. [Google Scholar] [CrossRef]
- Quispe-Astete, E.R.; Huallanca, W.J.; Parra, D.A. Shear strength evaluation of soil-geosynthetic and geosynthetic-geosynthetic interfaces of closure cover systems. Int. J. Geosynth. Ground Eng. 2023, 9, 14. [Google Scholar] [CrossRef]
- Fu, W.; Ji, G.Z.; Chen, H.H.; Yang, S.Y.; Guo, B.; Yang, H.; Huang, Z.Q. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater. Sep. Purif. Technol. 2020, 251, 9. [Google Scholar] [CrossRef]
- Liu, Q.J.; Deng, Y.; Tang, J.P.; Chen, D.; Li, X.; Lin, Q.T.; Yin, G.C.; Zhang, M.; Hu, H.W. Potassium lignosulfonate as a washing agent for remediating lead and copper co-contaminated soils. Sci. Total Environ. 2019, 658, 836–842. [Google Scholar] [CrossRef]
- Yang, T.Y.; Dai, M.M.; Tang, G.T.; Guo, Z.C.; Yang, Y.X.; Jiao, H.Z. Effect of an electro-assisted biochemical cycle reactor on bio-oxidation of gold ore. Miner. Eng. 2024, 209, 8. [Google Scholar] [CrossRef]
- Sheng, L.B.; Ding, D.X.; Zhang, H. Efficient removal of uranium from acidic mining wastewater using magnetic phosphate composites. Sep. Purif. Technol. 2024, 337, 16. [Google Scholar] [CrossRef]
- Jing, C.; Landsberger, S.; Li, Y.L. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater. J. Environ. Radioact. 2017, 175, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.N.; Yu, L.Q.; Dang, N.; Sun, L.X.; Zhang, P.X.; Cao, J.W.; Chen, G.C. Dendroremediation potential of six quercus species to polluted soil in historic copper mining sites. Forests 2023, 14, 15. [Google Scholar] [CrossRef]
- Sarathchandra, S.S.; Rengel, Z.; Solaiman, Z.M. Adding agricultural topsoil and growing perennial ryegrass (Lolium perenne L.) enhanced the rehabilitation of metal/loids enriched iron ore mine tailings. J. Soil Sci. Plant Nutr. 2024, 24, 2885–2897. [Google Scholar] [CrossRef]
- Lyu, L.; Liu, Q.Q.; He, M.H.; Gao, P.; Cai, Z.C.; Shi, J.J. Screening Suitable Ecological Grasses and the Seeding Rate in the Muli Mining Area. Sustainability 2024, 16, 19. [Google Scholar] [CrossRef]
- Huang, Y.J.; Qiu, X.Y.; Ge, Y.Y.; Yao, Y.T.; Yang, S.Y.; Zhang, J.; Zhou, S.B. Effects of combined pb and cu pollution on the growth and activities of plant antioxidant enzymes and rhizospheric soil enzymes of miscanthus floridulus. J. Environ. Sci. Manag. 2022, 25, 12–19. [Google Scholar] [CrossRef]
- Xiao, S.; Zhao, Y.L.; Li, H.; Deng, H.R.; Xu, H.; Xing, Y.M.; Li, D. Realization of Integrated Regional Ecological Management Based on Ecosystem Service Supply and Demand Flow Networks: An Example from a Dominant Mineral Resources Development Area. Remote Sens. 2024, 16, 22. [Google Scholar] [CrossRef]
- Mao, Z.J.; Wang, M.N.; Chu, J.W.; Sun, J.W.; Liang, W.; Yu, H.Y. Feature extraction and analysis of reclaimed vegetation in ecological restoration area of abandoned mines based on hyperspectral remote sensing images. J. Arid. Land. 2024, 16, 1409–1425. [Google Scholar] [CrossRef]
- Lu, Z.J.; Wang, H.S.; Wang, Z.X.; Liu, J.Z.; Li, Y.T.; Xia, L.; Song, S.X. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction. J. Env. Manag. 2024, 368, 17. [Google Scholar] [CrossRef]
- Huang, X.F.; Hong, Y.Y.; Li, Q.Z.; Liu, Z.B.; Liu, K.H. Characteristics and driving forces of the soil microbial community during 35 years of natural restoration in abandoned areas of the Daxin manganese mine, China. Env. Geochem. Hlth 2024, 46, 19. [Google Scholar] [CrossRef] [PubMed]
- Owiny, A.A.; Dusengemungu, L. Mycorrhizae in mine wasteland reclamation. Heliyon 2024, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Amir, H.; Cavaloc, Y.; Crossay, T.; Bourles, A.; Gensous, S.; Lagrange, A.; Burtet-Sarramegna, V.; Guentas, L. Importance and roles of arbuscular mycorrhizal fungi in new Caledonian ultramafic soils. Bot. Lett. 2023, 170, 449–458. [Google Scholar] [CrossRef]
- Du, X.P.; Bi, Y.L.; Tian, L.X.; Li, M.C.; Yin, K.J. Enhancing infiltration characteristics of compact soil in open-pit dumps through arbuscular mycorrhizal fungi inoculation in Amorpha fruticosa: Mechanisms and effects. Catena 2024, 247, 13. [Google Scholar] [CrossRef]
- Nie, H.; Li, C.; Jia, Z.H.; Cheng, X.F.; Liu, X.; Liu, Q.Q.; Chen, M.L.; Ding, Y.; Zhang, J.C. Microbial inoculants using spent mushroom substrates as carriers improve soil multifunctionality and plant growth by changing soil microbial community structure. J. Env. Manag. 2024, 370, 12. [Google Scholar] [CrossRef]
- Hu, X.S.; He, B.H.; Liu, Y.C.; Ma, S.Y.; Yu, C.H. Genomic characterization of a novel ureolytic bacteria, Lysinibacillus capsici TSBLM, and its application to the remediation of acidic heavy metal-contaminated soil. Sci. Total Env. 2024, 927, 12. [Google Scholar] [CrossRef]
- Neto, A.B.B.; Schwartz, G.; Noronha, N.C.; Gama, M.A.P.; Ferreira, G.C. Natural regeneration for restoration of degraded areas after bauxite mining: A case study in the Eastern Amazon. Ecol. Eng. 2021, 171, 9. [Google Scholar]
- Bayu, W.; Rethman, N.F.G.; Hammes, P.S. The role of animal manure in sustainable soil fertility management in sub-Saharan Africa: A review. J. Sustain. Agr. 2004, 25, 113–136. [Google Scholar] [CrossRef]
- Krauss, S.; Anthony, J.; Lapenzee, S.; Ritchie, A.; Elliott, C.; Dobrowolski, M.P.; Standish, R. Equivalent mating system parameters in post-mining and undisturbed native plant populations confirms restitution of bird-pollinator function. J. Appl. Ecol. 2024, 61, 1599–1611. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Bu, X.; Li, J.; Ji, Z.H.; Wang, C.G.; Xiao, X.; Li, F.L.; Wu, Z.H.; Wu, G.X.; Jia, P.; et al. Application of biochar and compost improved soil properties and enhanced plant growth in a Pb-Zn mine tailings soil. Environ. Sci. Pollut. Res. 2023, 30, 32337–32347. [Google Scholar] [CrossRef]
- Sarwar, M.J.; Shabaan, M.; Ayyub, M.; Zahir, Z.A.; Asghar, H.N.; Asif, K.; Shareef, A.; Zulfiqar, U. Harnessing the duo effect of plant growth-promoting rhizobacteria and organic amendments in the phytoremediation of cadmium: A Review. J. Soil. Sci. Plant Nutr. 2025, 25, 872–888. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Li, Z.L.; Liu, W.; Liu, S.H.; Zhang, L.M.; Zhong, L.Y.; Luo, X.M.; Liang, H. Restoration of rare earth mine areas: Organic amendments and phytoremediation. Environ. Sci. Pollut. Res. 2015, 22, 17151–17160. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Zhang, X.; Wang, J.Y.; Liu, Z.L.; Song, H.W.; An, J. Biochar Organic Fertilizer Combined with Indigenous Microorganisms Enhances the Growth of Landscape Grass Cultivated in a Substrate Mixed with Iron Tailings and Mining Topsoil. Plants 2024, 13, 15. [Google Scholar] [CrossRef]
- Wang, W.W.; Xue, J.C.; Zhang, L.P.; He, M.; You, J.J. Extraction of heavy metals from copper tailings by ryegrass (Lolium perenne L.) with the assistance of degradable chelating agents. Sci. Rep. 2024, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Dong, J.G. Research on ecological restoration and its impact on society in coal resource-based areas: Lessons from the Ruhr area in Germany and the Liulin area in China. Geoforum 2024, 154, 13. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Wang, L.P.; Ma, J.; Hua, Z.Y.; Chen, F. Metal-tolerant microbial succession mediated by mining reclamation improves network stress resistance. Water Air Soil. Poll. 2024, 235, 14. [Google Scholar] [CrossRef]
- Hou, D.; Xu, M.C.; Wang, M.L.; Li, X.S.; Li, S.J.; Wang, J.W.; Cao, M.Z. Research on ecological restoration and green reclamation technology of goaf in phosphorus mines. Front. Environ. Sci. 2024, 12, 12. [Google Scholar] [CrossRef]
- Feng, S.H.; Li, Z.W.; Zhang, C.; Qi, R.; Yang, L.Y. Ecological restoration in high-altitude mining areas: Evaluation soil reconstruction and vegetation recovery in the Jiangcang coal mining area on the Qinghai-Tibet Plateau. Front. Environ. Sci. 2025, 12, 15. [Google Scholar] [CrossRef]
- Wang, Z.W.; Zheng, Y.T.; Peng, J.; Zhou, F.; Yu, J.X.; Chi, R.; Xiao, C.Q. Mechanisms of combined bioremediation by phosphate-solubilizing fungus and plants and its effects on cadmium contamination in phosphate-mining wastelands. J. Environ. Manag. 2023, 346, 9. [Google Scholar] [CrossRef]
- Lian, Z.K.; Hao, H.C.; Zhao, J.; Cao, K.Z.; Wang, H.S.; He, Z.C. Evaluation of Remote Sensing Ecological Index Based on Soil and Water Conservation on the Effectiveness of Management of Abandoned Mine Landscaping Transformation. Int. J. Environ. Res. Public. Health 2022, 19, 15. [Google Scholar] [CrossRef]
- Sun, W.W.; Chen, D.S.; Li, Z.Y.; Li, S.Q.; Cheng, S.Y.; Niu, X.M.; Cai, Y.M.; Shi, Z.H.; Wu, C.Y.; Yang, G.; et al. Monitoring wetland plant diversity from space: Progress and perspective. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 18. [Google Scholar] [CrossRef]
- Yan, X.X.; Li, J.; Shao, Y.; Ma, T.Y.; Zhang, R.; Su, Y.T. Assessing open-pit mining impacts on semi-arid grassland: A framework for boundary and intensity quantification. J. Clean. Prod. 2024, 475, 15. [Google Scholar] [CrossRef]
- Patel, D.K.; Thakur, T.K.; Thakur, A.; Pandey, A.; Kumar, A.; Kumar, R.; Husain, F.M. Quantifying Land Degradation in Upper Catchment of Narmada River in Central India: Evaluation Study Utilizing Landsat Imagery. Water 2024, 16, 21. [Google Scholar] [CrossRef]
- Mao, Z.J.; Yu, H.Y.; Liang, W.; Sun, J.W. Dynamic monitoring of ecological restoration of abandoned mines based on GF-2 remote sensing images- Take Dawukou Ditch of Helan Mountain as an example. Ecol. Eng. 2024, 207, 14. [Google Scholar] [CrossRef]
- Pandey, M.; Thakur, R.R.; Nandi, D.; Bera, D.K.; Beuria, R.; Kumari, M.; Kasawnea, A.M.; Zhran, M. Geospatial monitoring of environmental sustainability: A remote sensing-based approach for assessing mining-induced impacts in Eastern India. Results Eng. 2025, 26, 14. [Google Scholar] [CrossRef]
- Chen, J.L.; Zhao, X.X.; Wang, H.Q.; Yan, J.X.; Yang, D.; Xie, K. Portraying heritage corridor dynamics and cultivating conservation strategies based on environment spatial model: An integration of multi-source data and image semantic segmentation. Herit. Sci. 2024, 12, 17. [Google Scholar] [CrossRef]
- Qi, J.W.; Zhang, Y.C.; Zhang, J.Q.; Wu, C.Y.; Chen, Y.A.; Cheng, Z.S. Study on the restoration of ecological environments in mining area based on GIS technology. Sustainability 2023, 15, 17. [Google Scholar] [CrossRef]
- Wang, J.Y.; Cui, K.K.; Yang, F.; Li, J.; Zhang, C.Y.; Du, T.M.; Zhang, H.R. Evaluation of spatiotemporal variation and impact factors for vegetation net primary productivity in a typical open-pit mining ecosystem in northwestern China. Land. Degrad. Dev. 2024, 35, 3756–3770. [Google Scholar] [CrossRef]
- De Almeida, F.C.; Silveira, E.M.D.; Acerbi, F.W.; Franca, L.C.D.; Bueno, I.T.; Terra, B.J.O. Multricriteria analysis to define priority areas for forest recovery in the Rio Doce basin, Minas Gerais. Nativa 2020, 8, 81–90. [Google Scholar] [CrossRef]
- Sun, H.; Hu, Z.Q.; Wang, S.; Song, D.Y. Long-term effects of underground mining on surface soil moisture and vegetation environment: Evidence from the Xishan mining area. Env. Monit. Assess. 2024, 196, 16. [Google Scholar] [CrossRef]
- Wang, X.C.; Liu, W.K.; Zhang, H.B.; Lu, F.L. Spatiotemporal differentiation characteristics of land ecological quality and its obstacle factors in the typical compound area of mine agriculture urban. Sustainability 2022, 14, 27. [Google Scholar] [CrossRef]
- Shi, Y.; Fan, X.X.; Chen, H.N.; Kao, Y.H.; Sun, M.Q. Landscape pattern evolution and ecological security assessment based on land use changes in mining cities: A case study of Heihe city. Front. Environ. Sci. 2024, 12, 1488439. [Google Scholar] [CrossRef]
- Marescotti, P.; Brancucci, G.; Sasso, G.; Solimano, M.; Marin, V.; Muzio, C.; Salmona, P. Geoheritage values and environmental issues of derelict mines: Examples from the sulfide mines of Gromolo and Petronio valleys (Eastern Liguria, Italy). Minerals 2018, 8, 22. [Google Scholar] [CrossRef]
- Oberholster, P.J.; De Klerk, A.R.; De Klerk, L.; Chamier, J.; Botha, A.M. Algal assemblage responses to acid mine drainage and steel plant wastewater effluent up and downstream of pre and post wetland rehabilitation. Ecol. Indic. 2016, 62, 106–116. [Google Scholar] [CrossRef]
- Gollan, J.R.; de Bruyn, L.L.; Reid, N.; Smith, D.; Wilkie, L. Can ants be used as ecological indicators of restoration progress in dynamic environments? A case study in a revegetated riparian zone. Ecol. Indic. 2011, 11, 1517–1525. [Google Scholar] [CrossRef]
- Andersen, A.N.; Einoder, L.D.; Fisher, A.; Hill, B.; Oberprieler, S.K. Faunal standards for the restoration of terrestrial ecosystems: A framework and its application to a high-profile case study. Restor. Ecol. 2023, 31, 8. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, W.Q.; Deng, X.Y. Coupling and coordination of coal mining intensity and social-ecological resilience in China. Ecol. Indic. 2021, 131, 11. [Google Scholar] [CrossRef]
- Aparicio, J.D.; Raimondo, E.E.; Saez, J.M.; Costa-Gutierrez, S.B.; Alvarez, A.; Benimeli, C.S.; Polti, M.A. The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. J. Env. Chem. Eng. 2022, 10, 19. [Google Scholar] [CrossRef]
- Martins, W.B.R.; Rodrigues, J.I.D.; de Oliveira, V.P.; Ribeiro, S.S.; Barros, W.D.; Schwartz, G. Mining in the Amazon: Importance, impacts, and challenges to restore degraded ecosystems. Are we on the right way? Ecol. Eng. 2022, 174, 13. [Google Scholar] [CrossRef]
Rank | Journal Name | Web of Science Major Division | Number of Articles | Impact Factor (2023) |
---|---|---|---|---|
1 | SCIENCE OF THE TOTAL ENVIRONMENT | ENVIRONMENTAL SCIENCES Q1 | 66 | 8.2 |
2 | ECOLOGICAL ENGINEERING | ECOLOGY Q1 | 62 | 3.9 |
3 | RESTORATION ECOLOGY | ECOLOGY Q2 | 57 | 2.8 |
4 | JOURNAL OF ENVIRONMENTAL MANAGEMENT | ENVIRONMENTAL SCIENCES Q1 | 53 | 8.0 |
5 | ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH | ENVIRONMENTAL SCIENCES Q1 | 49 | 4.9 |
6 | SUSTAINABILITY | ENVIRONMENTAL SCIENCES Q2 | 47 | 3.3 |
7 | LAND DEGRADATION DEVELOPMENT | ENVIRONMENTAL SCIENCES Q2 | 41 | 3.6 |
8 | ECOLOGICAL INDICATORS | ENVIRONMENTAL SCIENCES Q1 | 36 | 7.0 |
9 | REMOTE SENSING | ENVIRONMENTAL SCIENCES Q2 | 33 | 4.2 |
10 | FORESTS | FORESTS Q1 | 32 | 2.4 |
Number | High-Frequency Keywords | Frequency | High-Centrality Keywords | Centrality |
---|---|---|---|---|
1 | ecological restoration | 317 | accumulation | 1.32 |
2 | diversity | 165 | microorganisms | 1.23 |
3 | restoration | 165 | pollution | 1.12 |
4 | soil | 142 | mine | 1.01 |
5 | vegetation | 135 | dynamics | 0.73 |
6 | heavy metals | 110 | impact | 0.71 |
7 | community | 107 | patterns | 0.69 |
8 | reclamation | 104 | climate change | 0.69 |
9 | growth | 85 | jarrah forest | 0.61 |
10 | mine | 83 | Western Australia | 0.61 |
Keywords | Year | Strength | Begin | End | 2015–2024 |
---|---|---|---|---|---|
accumulation | 2015 | 5.06 | 2015 | 2018 | ▃▃▃▃▂▂▂▂▂▂ |
management | 2015 | 3.84 | 2015 | 2018 | ▃▃▃▃▂▂▂▂▂▂ |
acid mine drainage | 2016 | 4.49 | 2016 | 2019 | ▂▃▃▃▃▂▂▂▂▂ |
ecological restoration | 2015 | 3.93 | 2017 | 2018 | ▂▂▃▃▂▂▂▂▂▂ |
biodiversity | 2015 | 3.42 | 2017 | 2018 | ▂▂▃▃▂▂▂▂▂▂ |
land use change | 2018 | 3.55 | 2018 | 2020 | ▂▂▂▃▃▃▂▂▂▂ |
organic carbon | 2016 | 4.59 | 2019 | 2020 | ▂▂▂▂▃▃▂▂▂▂ |
technology | 2020 | 3.48 | 2020 | 2021 | ▂▂▂▂▂▃▃▂▂▂ |
abundance | 2016 | 3.4 | 2020 | 2021 | ▂▂▂▂▂▃▃▂▂▂ |
phosphorus | 2021 | 4.1 | 2021 | 2024 | ▂▂▂▂▂▂▃▃▃▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Gong, J.; Zhang, L.; Zhang, M.; Chen, J.; Liang, H.; Chen, Y.; Fu, X.; Su, R.; Luo, Y. Research Progress of Mine Ecological Restoration Technology. Resources 2025, 14, 100. https://doi.org/10.3390/resources14060100
Xiang Y, Gong J, Zhang L, Zhang M, Chen J, Liang H, Chen Y, Fu X, Su R, Luo Y. Research Progress of Mine Ecological Restoration Technology. Resources. 2025; 14(6):100. https://doi.org/10.3390/resources14060100
Chicago/Turabian StyleXiang, Yue, Jiayi Gong, Liyong Zhang, Minghai Zhang, Jia Chen, Hui Liang, Yonghua Chen, Xiaohua Fu, Rongkui Su, and Yiting Luo. 2025. "Research Progress of Mine Ecological Restoration Technology" Resources 14, no. 6: 100. https://doi.org/10.3390/resources14060100
APA StyleXiang, Y., Gong, J., Zhang, L., Zhang, M., Chen, J., Liang, H., Chen, Y., Fu, X., Su, R., & Luo, Y. (2025). Research Progress of Mine Ecological Restoration Technology. Resources, 14(6), 100. https://doi.org/10.3390/resources14060100