Abstract
Accurate reconstruction of train collision accidents is essential for understanding impact conditions, assessing crashworthiness, and supporting safety improvements. This study proposes a surrogate-based optimization framework for reconstructing structural damage in train collisions from post-accident observations. The pre-impact kinematic state, expressed by a six-dimensional vector of relative offsets, rotations, and impact velocity, is formulated as an inverse problem in which a Sum of Squared Relative Deviations (SSRD) between measured and simulated residual deformations serves as the objective function. A reduced two-vehicle finite element (FE) model is developed to capture the dominant impact dynamics, an Optimal Latin Hypercube Design is used to sample the parameter space, and a Kriging surrogate model is constructed to approximate the response. A simulated annealing algorithm is applied to search for the global minimum. The framework is demonstrated on a real high-speed rear-end collision of electric multiple units. The Kriging model achieves a coefficient of determination of about 0.85, and the optimized kinematic state yields FE-predicted residual deformations that agree with field measurements at key locations to within about 5%. The results show that the method can efficiently reconstruct physically plausible collision scenarios and provide insight into parameter sensitivity and identifiability for railway safety analysis.