Abstract
This paper proposes a hybrid collaborative framework to optimize technology selection in Small and Medium-sized Enterprises (SMEs) by integrating machine learning (ML) predictions with Planning Poker, consensus-based estimation technique used in agile software development. Addressing known challenges such as cognitive bias, resource constraints, and the need for inclusive decision-making, the proposed model combines data-driven suitability analysis with stakeholder-driven consensus. ML generates quantitative, criterion-wise suitability scores based on historical SME data, providing transparent baselines for evaluation. Stakeholders independently assess candidate technologies using Planning Poker, and their consensus is blended with ML predictions through a flexible weighting mechanism. An illustrative case study on CRM tool selection illustrates the framework’s practical advantages: improved decision accuracy, transparency, and greater stakeholder engagement. The methodology is iterative, allowing for continuous learning and adaptation as new data emerges. This dual approach ensures that technology adoption decisions in SMEs are both empirically validated and contextually robust, offering a significant improvement over traditional, siloed methods.