Impact on Predictive Performance of Air Pollutants in PV Forecasting Using Multi-Model Ensemble Learning: Evidence from the Port Logistics Hinterland Area
Abstract
1. Introduction
- (1)
- Machine learning algorithms often surpass traditional time series models in performance. However, the superiority of a specific machine learning model is not consistent, as it varies across different research studies.
- (2)
- Recent studies highlight the RNN network’s superior efficiency over traditional ANNs across varied condition. In addition, RNN and CNN-based models are widely used, where the former is used to identify the temporal characteristics of the power generation data, and the latter is used to identify the spatial characteristics.
- (3)
- Typically, ensemble and hybrid models have better prediction power than single models.
- (4)
- Research on forecasting solar power generation often focuses on meteorological data, with limited attention to the impact of PM and GHG.
2. Methodology
2.1. Light GBM
2.2. XGBoost
2.3. LSTM
2.4. Stacked Ensemble
2.5. Evaluation of the Prediction Power
3. Data and Results
3.1. Dataset
3.2. Elastic Net
3.3. Comparison Solar Power Forecasting Model Performance
3.4. Comparison of Detailed Structure and Performance of Stacked Ensemble Models
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Newell, R.; Raimi, D.; Villanueva, S.; Prest, B. Global Energy Outlook 2021: Pathways from Paris; Resources for the Future: Washington, DC, USA, 2021. [Google Scholar]
- Bhattarai, U.; Maraseni, T.; Apan, A. Assay of Renewable Energy Transition: A Systematic Literature Review. Sci. Total Environ. 2022, 833, 155159. [Google Scholar] [CrossRef]
- Oh, H.; Hong, I.; Oh, I. South Korea’s 2050 Carbon Neutrality Policy. East Asian Policy 2021, 13, 33–46. [Google Scholar] [CrossRef]
- Moon, S.; Kim, Y.; Kim, M.; Lee, J. Policy Designs to Increase Public and Local Acceptance for Energy Transition in South Korea. Energy Policy 2023, 182, 113736. [Google Scholar] [CrossRef]
- Güney, T. Solar Energy, Governance and CO2 Emissions. Renew. Energy 2022, 184, 791–798. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. Snapshot of Photovoltaics—May 2023. EPJ Photovolt. 2023, 14, 23. [Google Scholar] [CrossRef]
- Notton, G.; Nivet, M.-L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and Stochastic Character of Renewable Energy Sources: Consequences, Cost of Intermittence and Benefit of Forecasting. Renew. Sustain. Energy Rev. 2018, 87, 96–105. [Google Scholar] [CrossRef]
- Kawabe, K.; Tanaka, K. Impact of Dynamic Behavior of Photovoltaic Power Generation Systems on Short-Term Voltage Stability. IEEE Trans. Power Syst. 2015, 30, 3416–3424. [Google Scholar] [CrossRef]
- van der Meer, D.W.; Shepero, M.; Svensson, A.; Widén, J.; Munkhammar, J. Probabilistic Forecasting of Electricity Consumption, Photovoltaic Power Generation and Net Demand of an Individual Building Using Gaussian Processes. Appl. Energy 2018, 213, 195–207. [Google Scholar] [CrossRef]
- Li, X.; Wagner, F.; Peng, W.; Yang, J.; Mauzerall, D.L. Reduction of Solar Photovoltaic Resources Due to Air Pollution in China. Proc. Natl. Acad. Sci. USA 2017, 114, 11867–11872. [Google Scholar] [CrossRef]
- World Health Organization. WHO Ambient Air Quality Database, 2022 Update: Status Report; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-004769-3. [Google Scholar]
- Son, J.; Jeong, S.; Park, H.; Park, C.-E. The Effect of Particulate Matter on Solar Photovoltaic Power Generation over the Republic of Korea. Environ. Res. Lett. 2020, 15, 084004. [Google Scholar] [CrossRef]
- Salamova, A.S.; Kantemirova, M.; Statsenko, E. Dynamics and Accounting of GHG Emissions in the World. BIO Web Conf. 2023, 63, 06011. [Google Scholar] [CrossRef]
- Li, H.; Ren, Z.; Xu, Y.; Li, W.; Hu, B. A Multi-Data Driven Hybrid Learning Method for Weekly Photovoltaic Power Scenario Forecast. IEEE Trans. Sustain. Energy 2022, 13, 91–100. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, J.; Wang, C.; Wang, Y.; Shang, M.; Zhang, Z.; Chen, F.; Chu, Q. A Six-Year Record of Greenhouse Gas Emissions in Different Growth Stages of Summer Maize Influenced by Irrigation and Nitrogen Management. Field Crops Res. 2023, 290, 108744. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting: Techniques and Optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Fjelkestam Frederiksen, C.A.; Cai, Z. Novel Machine Learning Approach for Solar Photovoltaic Energy Output Forecast Using Extra-Terrestrial Solar Irradiance. Appl. Energy 2022, 306, 118152. [Google Scholar] [CrossRef]
- Zang, H.; Xu, R.; Cheng, L.; Ding, T.; Liu, L.; Wei, Z.; Sun, G. Residential Load Forecasting Based on LSTM Fusing Self-Attention Mechanism with Pooling. Energy 2021, 229, 120682. [Google Scholar] [CrossRef]
- Keles, D.; Scelle, J.; Paraschiv, F.; Fichtner, W. Extended Forecast Methods for Day-Ahead Electricity Spot Prices Applying Artificial Neural Networks. Appl. Energy 2016, 162, 218–230. [Google Scholar] [CrossRef]
- Obando, E.D.; Carvajal, S.X.; Agudelo, J.P. Solar Radiation Prediction Using Machine Learning Techniques: A Review. IEEE Lat. Am. Trans. 2019, 17, 684–697. [Google Scholar] [CrossRef]
- Lima, M.A.F.; Carvalho, P.C.; Fernández-Ramírez, L.M.; Braga, A.P. Improving Solar Forecasting Using Deep Learning and Portfolio Theory Integration. Energy 2020, 195, 117016. [Google Scholar] [CrossRef]
- Ying, C.; Wang, W.; Yu, J.; Li, Q.; Yu, D.; Liu, J. Deep Learning for Renewable Energy Forecasting: A Taxonomy, and Systematic Literature Review. J. Clean. Prod. 2023, 384, 135414. [Google Scholar] [CrossRef]
- Sharadga, H.; Hajimirza, S.; Balog, R.S. Time Series Forecasting of Solar Power Generation for Large-Scale Photovoltaic Plants. Renew. Energy 2020, 150, 797–807. [Google Scholar] [CrossRef]
- Jung, Y.; Jung, J.; Kim, B.; Han, S. Long Short-Term Memory Recurrent Neural Network for Modeling Temporal Patterns in Long-Term Power Forecasting for Solar PV Facilities: Case Study of South Korea. J. Clean. Prod. 2020, 250, 119476. [Google Scholar] [CrossRef]
- Liu, C.-H.; Gu, J.-C.; Yang, M.-T. A Simplified LSTM Neural Networks for One Day-Ahead Solar Power Forecasting. IEEE Access 2021, 9, 17174–17195. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M.; Lughi, V. Deep Learning Neural Networks for Short-Term Photovoltaic Power Forecasting. Renew. Energy 2021, 172, 276–288. [Google Scholar] [CrossRef]
- Lee, D.; Kim, K. PV Power Prediction in a Peak Zone Using Recurrent Neural Networks in the Absence of Future Meteorological Information. Renew. Energy 2021, 173, 1098–1110. [Google Scholar] [CrossRef]
- Kazem, H.A.; Yousif, J.H.; Chaichan, M.T.; Al-Waeli, A.H.; Sopian, K. Long-Term Power Forecasting Using FRNN and PCA Models for Calculating Output Parameters in Solar Photovoltaic Generation. Heliyon 2022, 8, e08803. [Google Scholar] [CrossRef]
- Khan, W.; Walker, S.; Zeiler, W. Improved Solar Photovoltaic Energy Generation Forecast Using Deep Learning-Based Ensemble Stacking Approach. Energy 2022, 240, 122812. [Google Scholar] [CrossRef]
- Rahman, N.H.A.; Hussin, M.Z.; Sulaiman, S.I.; Hairuddin, M.A.; Saat, E.H.M. Univariate and Multivariate Short-Term Solar Power Forecasting of 25MWac Pasir Gudang Utility-Scale Photovoltaic System Using LSTM Approach. Energy Rep. 2023, 9, 387–393. [Google Scholar] [CrossRef]
- Sarmas, E.; Spiliotis, E.; Stamatopoulos, E.; Marinakis, V.; Doukas, H. Short-Term Photovoltaic Power Forecasting Using Meta-Learning and Numerical Weather Prediction Independent Long Short-Term Memory Models. Renew. Energy 2023, 216, 118997. [Google Scholar] [CrossRef]
- Malakouti, S.M.; Menhaj, M.B.; Suratgar, A.A. The Usage of 10-Fold Cross-Validation and Grid Search to Enhance ML Methods Performance in Solar Farm Power Generation Prediction. Clean. Eng. Technol. 2023, 15, 100664. [Google Scholar] [CrossRef]
- Ye, J.; Zhao, B.; Deng, H. Photovoltaic Power Prediction Model Using Pre-Train and Fine-Tune Paradigm Based on LightGBM and XGBoost. Procedia Comput. Sci. 2023, 224, 407–412. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, G.; Luo, D.; Bavirisetti, D.P.; Xiao, G. Multi-Timescale Photovoltaic Power Forecasting Using an Improved Stacking Ensemble Algorithm Based LSTM-Informer Model. Energy 2023, 283, 128669. [Google Scholar] [CrossRef]
- Babalhavaeji, A.; Radmanesh, M.; Jalili, M.; González, S.A. Photovoltaic Generation Forecasting Using Convolutional and Recurrent Neural Networks. Energy Rep. 2023, 9, 119–123. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, L. Short-Term Photovoltaic Power Generation Prediction Based on LightGBM-LSTM Model. In Proceedings of the 2020 5th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 12–14 September 2020; pp. 543–547. [Google Scholar]
- Ju, Y.; Sun, G.; Chen, Q.; Zhang, M.; Zhu, H.; Rehman, M.U. A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting. IEEE Access 2019, 7, 28309–28318. [Google Scholar] [CrossRef]
- Ren, J.; Yu, Z.; Gao, G.; Yu, G.; Yu, J. A CNN-LSTM-LightGBM Based Short-Term Wind Power Prediction Method Based on Attention Mechanism. Energy Rep. 2022, 8, 437–443. [Google Scholar] [CrossRef]
- Sun, L.; Koopialipoor, M.; Jahed Armaghani, D.; Tarinejad, R.; Tahir, M.M. Applying a Meta-Heuristic Algorithm to Predict and Optimize Compressive Strength of Concrete Samples. Eng. Comput. 2021, 37, 1133–1145. [Google Scholar] [CrossRef]
- Pan, Z.; Fang, S.; Wang, H. LightGBM Technique and Differential Evolution Algorithm-Based Multi-Objective Optimization Design of DS-APMM. IEEE Trans. Energy Convers. 2020, 36, 441–455. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery, New York, NY, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Zhu, J.; Li, M.; Luo, L.; Zhang, B.; Cui, M.; Yu, L. Short-Term PV Power Forecast Methodology Based on Multi-Scale Fluctuation Characteristics Extraction. Renew. Energy 2023, 208, 141–151. [Google Scholar] [CrossRef]
- Li, X.; Ma, L.; Chen, P.; Xu, H.; Xing, Q.; Yan, J.; Lu, S.; Fan, H.; Yang, L.; Cheng, Y. Probabilistic Solar Irradiance Forecasting Based on XGBoost. Energy Rep. 2022, 8, 1087–1095. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Jozefowicz, R.; Zaremba, W.; Sutskever, I. An Empirical Exploration of Recurrent Network Architectures. Proceedings of the International Conference on Machine Learning, 2015, pp. 2342–2350. Available online: https://proceedings.mlr.press/v37/jozefowicz15.html (accessed on 10 October 2025).
- Lee, J.; Cho, Y. National-Scale Electricity Peak Load Forecasting: Traditional, Machine Learning, or Hybrid Model? Energy 2022, 239, 122366. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, D.; Park, L.; Kim, J.; Cho, S. Multiscale LSTM-Based Deep Learning for Very-Short-Term Photovoltaic Power Generation Forecasting in Smart City Energy Management. IEEE Syst. J. 2020, 15, 346–354. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Wen, Y.; Ren, Y.; Liang, X.; Cheng, J.; Kang, M. An Improved Stacking Ensemble Learning Model for Predicting the Effect of Lattice Structure Defects on Yield Stress. Comput. Ind. 2023, 151, 103986. [Google Scholar] [CrossRef]
- Makridakis, S. Accuracy Measures: Theoretical and Practical Concerns. Int. J. Forecast. 1993, 9, 527–529. [Google Scholar] [CrossRef]
- Mayer, M.J. Benefits of Physical and Machine Learning Hybridization for Photovoltaic Power Forecasting. Renew. Sustain. Energy Rev. 2022, 168, 112772. [Google Scholar] [CrossRef]
- Chan, Y.H. Biostatistics 104: Correlational Analysis. Singap. Med. J. 2003, 44, 614–619. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- De Mol, C.; De Vito, E.; Rosasco, L. Elastic-Net Regularization in Learning Theory. J. Complex. 2009, 25, 201–230. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.H.; Kim, H.W. Prediction Method of Photovoltaic Power Generation Based on LSTM Using Weather Information. J. Korean Inst. Commun. Inf. Sci. 2019, 44, 2231–2238. [Google Scholar] [CrossRef]
- Coleman, N.; Esmalian, A.; Lee, C.-C.; Gonzales, E.; Koirala, P.; Mostafavi, A. Energy Inequality in Climate Hazards: Empirical Evidence of Social and Spatial Disparities in Managed and Hazard-Induced Power Outages. Sustain. Cities Soc. 2023, 92, 104491. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; von Krauland, A.-K.; Coughlin, S.J.; Palmer, F.C.; Smith, M.M. Zero Air Pollution and Zero Carbon from All Energy at Low Cost and without Blackouts in Variable Weather throughout the US with 100% Wind-Water-Solar and Storage. Renew. Energy 2022, 184, 430–442. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Tabakov, P.Y. Influence of Photovoltaic Cell Technologies and Elevated Temperature on Photovoltaic System Performance. Ain Shams Eng. J. 2023, 14, 101984. [Google Scholar] [CrossRef]
- Kim, E.; Akhtar, M.S.; Yang, O.-B. Designing Solar Power Generation Output Forecasting Methods Using Time Series Algorithms. Electr. Power Syst. Res. 2023, 216, 109073. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Z.; Ma, Y.; Wang, L.; Wu, R.; Wang, W. Concentrations, Correlations and Chemical Species of PM2. 5/PM10 Based on Published Data in China: Potential Implications for the Revised Particulate Standard. Chemosphere 2016, 144, 518–526. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, B.; Zhang, L.; Luo, R. Spatiotemporal Variations of PM2.5 and PM10 Concentrations between 31 Chinese Cities and Their Relationships with SO2, NO2, CO and O3. Particuology 2015, 20, 141–149. [Google Scholar] [CrossRef]







| Author(s) | Year | Main Variables | Model(s) | Description |
|---|---|---|---|---|
| Sharadga et al. [23] | 2020 | pow | BiLSTM, LSTM, LRNN, SARIMA, ARIMA, ARMA | Neural networks are more accurate than statistical models |
| Ahmed et al. [16] | 2020 | irr, ta, ws, wd, h | ANN based models | Ensemble of ANN is best for forecasting short term PV forecast. CNN is found to excel in eliciting a model’s deep underlying non-linear input–output relationships. |
| Jung et al. [24] | 2020 | irr, ta, h, ws, pre, cc, sun, month of operation | LSTM-RNN | A stacked LSTM-RNN model is good for monthly PV power output forecasting in new photovoltaic systems. |
| Liu et al. [25] | 2021 | irr, ta, h, tpv | MLP, LSTM | LSTM outperformed MLP in terms of performance |
| Mellit et al. [26] | 2021 | pow | LSTM, GRU, Bi-LSTM, Bi-GRU, CNN, CNN-LSTM, GRU-CNN | LSTM, GRU based model is good, especially for very short-term forecasting. |
| Li et al. [14] | 2021 | ta, h, p, cc | GRU-CNN | GRU-CNN hybrid model enables effective learning of spatiotemporal characteristics in solar power generation data. |
| Lee and Kim [27] | 2021 | ta, h, cc, rad, pow, day of month, month of year | LSTM, GRU | The GRU-based model showed superior and more robust performance compared to ANN and LSTM. |
| Kazem et al. [28] | 2022 | ta, irr | FRNN, PCA | FRNN better simulates the experimental results curve than PCA. |
| Khan et al. [29] | 2022 | t, day, pow, irr, h, ta | ANN, LSTM, Bagging, DSE-XGB | DSE-XGB is a stacked ensemble algorithm utilizing ANN and LSTM. It shows a 10–12% improvement in the R2 value compared to other single models. |
| Rahman et al. [30] | 2023 | irr, tpv, pow | LSTM | LSTM showed superior performance in multivariate settings over univariate models for longer time horizons. |
| Sarmas et al. [31] | 2023 | irr, ta | Meta, Stack-LSTM, BiLSTM, CNN-LSTM, ConvLSTM, EW, META | On average, Stack-LSTM provides the highest forecasting accuracy, and meta-learning enhances the accuracy by up to 5% over the best base model. |
| Malakouti et al. [32] | 2023 | ta, tpv, irr | DT, Light GBM, ET | The prediction power between models is similar. |
| Ye et al. [33] | 2023 | irr | Light GBM-XGBoost, XGBoost, LightGBM | Ensemble models perform better than single models. |
| Cao et al. [34] | 2023 | Pyranometer, rad, ta, ws | LSTM-Informer, LSTM, BiLSTM, Informer, Autoformer, Stack-ETR | LSTM excels in short-term forecasting. They presented a stacking ensemble algorithm-based LSTM-Informer model for short and long-term forecasting. |
| Babalhavaeji et al. [35] | 2023 | irr, h, ta, ws | CNN-GRU, LSTM, GRU, CNN-LSTM | They pioneered CNN-GRU combination for solar power forecasting. Ensemble models are better than single models. |
| Category | Subcategory | Features |
|---|---|---|
| Input | Time | Year, Month, Day, Hour |
| Meteorological variables | Temperature, Wind speed, Wind direction, Humidity, Air pressure, Sunshine, Insolation, Cloud cover, Ground temperature | |
| Particulate matter | PM10, PM2.5 | |
| GHG | SO2, NO2, O3, CO | |
| Output | Photovoltaic power generation | |
| Dataset | Model | RMSE | MAE | MSE | R2 | |
|---|---|---|---|---|---|---|
| 1 | Weather | Stacked ensemble | 11.0401 | 6.6573 | 121.88 | 0.9854 |
| LightGBM | 11.5406 | 6.8913 | 133.1844 | 0.9840 | ||
| XGBoost | 11.7203 | 7.1504 | 137.3665 | 0.9835 | ||
| LSTM | 17.3475 | 12.4682 | 300.9371 | 0.9639 | ||
| 2 | Weather + PM | Stacked ensemble | 10.9826 | 6.5692 | 120.6165 | 0.9855 |
| LightGBM | 11.4977 | 6.9889 | 132.1973 | 0.9841 | ||
| XGBoost | 13.0001 | 7.7861 | 169.0039 | 0.9797 | ||
| LSTM | 18.6931 | 13.5628 | 349.4316 | 0.9581 | ||
| 3 | Weather + GHG | Stacked ensemble | 11.0030 | 6.6166 | 121.0668 | 0.9855 |
| LightGBM | 11.7156 | 7.0447 | 137.2564 | 0.9835 | ||
| XGBoost | 12.6112 | 7.5726 | 159.0428 | 0.9809 | ||
| LSTM | 16.8774 | 12.1153 | 284.8481 | 0.9658 | ||
| 4 | Weather + PM/GHG | Stacked ensemble | 10.7245 | 6.4501 | 115.0156 | 0.9862 |
| LightGBM | 11.2146 | 6.9358 | 125.7684 | 0.9849 | ||
| XGBoost | 12.809971 | 7.5284 | 164.0954 | 0.9803 | ||
| LSTM | 19.6150 | 14.8621 | 384.7480 | 0.9538 | ||
| Dataset | Base Model | RMSE | MAE | ||
|---|---|---|---|---|---|
| LightGBM | XGBoost | Total | |||
| Weather | 5 (83.81%) | 4 (16.19%) | 9 | 11.0401 | 6.6573 |
| Weather + PM | 5 (75.93%) | 6 (24.07%) | 11 | 10.9826 | 6.5692 |
| Weather + GHG | 6 (86.90%) | 5 (13.10%) | 11 | 11.0030 | 6.6166 |
| Weather + PM/GHG | 5 (88.40%) | 2 (11.60%) | 7 | 10.7245 | 6.4501 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.; Lee, J. Impact on Predictive Performance of Air Pollutants in PV Forecasting Using Multi-Model Ensemble Learning: Evidence from the Port Logistics Hinterland Area. Systems 2025, 13, 943. https://doi.org/10.3390/systems13110943
Ahn J, Lee J. Impact on Predictive Performance of Air Pollutants in PV Forecasting Using Multi-Model Ensemble Learning: Evidence from the Port Logistics Hinterland Area. Systems. 2025; 13(11):943. https://doi.org/10.3390/systems13110943
Chicago/Turabian StyleAhn, Jungmin, and Juyong Lee. 2025. "Impact on Predictive Performance of Air Pollutants in PV Forecasting Using Multi-Model Ensemble Learning: Evidence from the Port Logistics Hinterland Area" Systems 13, no. 11: 943. https://doi.org/10.3390/systems13110943
APA StyleAhn, J., & Lee, J. (2025). Impact on Predictive Performance of Air Pollutants in PV Forecasting Using Multi-Model Ensemble Learning: Evidence from the Port Logistics Hinterland Area. Systems, 13(11), 943. https://doi.org/10.3390/systems13110943

