Identification and Spatiotemporal Expression of Adenosine Deaminases Acting on RNA (ADAR) during Earthworm Regeneration: Its Possible Implication in Muscle Redifferentiation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Computational Sequence Analysis
2.2. Comparative and Phylogenetic Analyses
2.3. Quantitative Real-Time PCR
2.4. Fluorescent In Situ Hybridization
3. Results
3.1. Sequence and Domain Analyses
3.2. Temporal Expression of Pex-ADAR mRNA during Regeneration
3.3. Spatial Expression of Pex-ADAR mRNA during Regeneration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Venø, M.T.; Bramsen, J.B.; Bendixen, C.; Panitz, F.; Holm, I.E.; Öhman, M.; Kjems, J. Spatio-temporal regulation of ADAR editing during development in porcine neural tissues. RNA Biol. 2012, 9, 1054–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gacem, N.; Kavo, A.; Zerad, L.; Richard, L.; Mathis, S.; Kapur, R.P.; Parisot, M.; Amiel, J.; Dufour, S.; de la Grange, P.; et al. ADAR1 mediated regulation of neural crest derived melanocytes and Schwann cell development. Nat. Commun. 2020, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.H.; Lin, C.H.; Qi, L.; Fei, J.; Li, Y.; Yong, K.J.; Liu, M.; Song, Y.; Chow, R.K.; Ng, V.H.; et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut 2014, 63, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.D.; Öhman, M. ADAR1 editing and its role in cancer. Genes (Basel) 2019, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Rice, G.I.; Kasher, P.R.; Forte, G.M.; Mannion, N.M.; Greenwood, S.M.; Szynkiewicz, M.; Dickerson, J.E.; Bhaskar, S.S.; Zampini, M.; Briggs, T.A.; et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet. 2012, 44, 1243–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablonovitch, A.L.; Deng, P.; Jacobson, D.; Li, J.B. The evolution and adaptation of A-to-I RNA editing. PLoS Genet. 2017, 13, e1007064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett, S.; Rosenthal, J.J.C. RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science 2012, 335, 848–851. [Google Scholar] [CrossRef] [Green Version]
- Bass, B.L.; Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 1988, 55, 1089–1098. [Google Scholar] [CrossRef]
- Hough, R.F.; Bass, B.L. Purification of the Xenopus laevis double-stranded RNA adenosine deaminase. J. Biol. Chem. 1994, 269, 9933–9939. [Google Scholar]
- Melcher, T.; Maas, S.; Herb, A.; Sprengel, R.; Seeburg, P.H.; Higuchi, M. A mammalian RNA editing enzyme. Nature 1996, 379, 460–464. [Google Scholar] [CrossRef]
- O’Connell, M.A.; Gerber, A.; Keller, W. Purification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA. J. Biol. Chem. 1997, 272, 473–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosani, U.; Bai, C.M.; Maso, L.; Shapiro, M.; Abbadi, M.; Domeneghetti, S.; Wang, C.M.; Cendron, L.; MacCarthy, T.; Venier, P. A-to-I editing of Malacoherpesviridae RNAs supports the antiviral role of ADAR1 in mollusks. BMC Evol. Biol. 2019, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.J.; Lee, M.S.; Tak, E.S.; Lee, E.; Koh, K.S.; Ahn, C.H.; Park, S.C. Gene expression profile in the anterior regeneration of the earthworm using expressed sequence tags. Biosci. Biotechnol. Biochem. 2009, 73, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, R.P.; Bleidorn, C.; Aguado, M.T. Regeneration mechanisms in Syllidae (Annelida). Regeneration 2018, 5, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Witman, N.M.; Behm, M.; Ohman, M.; Morrison, J.I. ADAR-related activation of adenosine-to-inosine RNA editing during regeneration. Stem Cells Dev. 2013, 22, 2254–2267. [Google Scholar] [CrossRef]
- Park, I.Y.; Cha, J.R.; Ok, S.M.; Shin, C.; Kim, J.S.; Kwak, H.J.; Yu, Y.S.; Kim, Y.K.; Medina, B.; Cho, S.J.; et al. A new earthworm cellulase and its possible role in the innate immunity. Dev. Comp. Immunol. 2017, 67, 476–480. [Google Scholar] [CrossRef]
- Nakai, K.; Horton, P. PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 1999, 24, 34–36. [Google Scholar] [CrossRef]
- Cho, S.J.; Vallès, Y.; Weisblat, D.A. Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech helobdella. Mol. Biol. Evol. 2014, 31, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Stefl, R.; Xu, M.; Skrisovska, L.; Emeson, R.B.; Allain, F.H. Structure and specific RNA binding of ADAR2 double-stranded RNA binding motifs. Structure 2006, 14, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Keegan, L.P.; Leroy, A.; Sproul, D.; O’Connell, M.A. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol. 2004, 5, 209. [Google Scholar] [CrossRef] [Green Version]
- Savva, Y.A.; Rieder, L.E.; Reenan, R.A. The ADAR protein family. Genome Biol. 2012, 13, 252. [Google Scholar] [CrossRef] [PubMed]
- Schade, M.; Turner, C.J.; Kühne, R.; Schmieder, P.; Lowenhaupt, K.; Herbert, A.; Rich, A.; Oschkinat, H. The solution structure of the Zα domain of the human RNA editing enzyme ADAR1 reveals a prepositioned binding surface for Z-DNA. Proc. Natl. Acad. Sci. USA 1999, 96, 12465–12470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, A.; Rich, A. The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1. Proc. Natl. Acad. Sci. USA 2001, 98, 12132–12137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jantsch, M.F.; Öhman, M. RNA Editing by Adenosine Deaminases that Act on RNA (ADARs). In RNA Editing; Göringer, H.U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 20, pp. 51–84. [Google Scholar]
- Doyle, M.; Jantsch, M.F. Distinct in vivo roles for double-stranded RNA-binding domains of the Xenopus RNA-editing enzyme ADAR1 in chromosomal targeting. J. Cell Biol. 2003, 161, 309–319. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, M.; Samuel, C.E. Chimeric double-stranded RNA-specific adenosine deaminase ADAR1 proteins reveal functional selectivity of double-stranded RNA-binding domains from ADAR1 and protein kinase PKR. Proc. Natl. Acad. Sci. USA 2000, 97, 12541–12546. [Google Scholar] [CrossRef] [Green Version]
- Tonkin, L.A.; Saccomanno, L.; Morse, D.P.; Brodigan, T.; Krause, M.; Bass, B.L. RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J. 2002, 21, 6025–6035. [Google Scholar] [CrossRef] [Green Version]
- Grice, L.F.; Degnan, B.M. The origin of the ADAR gene family and animal RNA editing. BMC Evol. Biol. 2015, 15, 4. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.S.; Kim, J.; Yi, J.; Park, S.C.; Lee, H.Y.; Cho, S.J. Characterization of Perionyx excavatus Development and Its Head Regeneration. Biology 2020, 9, 273. [Google Scholar] [CrossRef]
- Park, S.K.; Cho, S.-J.; Park, S.C. Histological observations of blastema formation during earthworm tail regeneration. Invertebr. Reprod. Dev. 2013, 57, 165–169. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, X.B.; Zhang, J.J.; Li, M.L.; Wu, S.S.; Ma, X.Y.; Wang, X.; Zhao, H.F.; Li, Y.; Zhu, H.H.; et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nat. Commun. 2020, 11, 2656. [Google Scholar] [CrossRef]
- Farajollahi, S.; Maas, S. Molecular diversity through RNA editing: A balancing act. Trends Genet. 2010, 26, 221–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, W.; Wang, X.; Buchanan, M.; He, K.; Sharma, R.; Zhang, L.; Wang, Q.; Yu, J. ADAR1 is essential for intestinal homeostasis and stem cell maintenance. Cell Death Dis. 2013, 4, e599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, C.L.; Liu, H.; Huang, Y.; Kang, L.; Chen, H.W.; Chen, Y.T.; Wee, Y.R.; Chen, S.J.; Tan, B.C. ADAR1 deaminase contributes to scheduled skeletal myogenesis progression via stage-specific functions. Cell Death Differ. 2014, 21, 707–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, Y.B.; Yu, Y.-S.; Park, B.J.; Cho, S.-J.; Park, S.C. Identification and Spatiotemporal Expression of Adenosine Deaminases Acting on RNA (ADAR) during Earthworm Regeneration: Its Possible Implication in Muscle Redifferentiation. Biology 2020, 9, 448. https://doi.org/10.3390/biology9120448
Yoon YB, Yu Y-S, Park BJ, Cho S-J, Park SC. Identification and Spatiotemporal Expression of Adenosine Deaminases Acting on RNA (ADAR) during Earthworm Regeneration: Its Possible Implication in Muscle Redifferentiation. Biology. 2020; 9(12):448. https://doi.org/10.3390/biology9120448
Chicago/Turabian StyleYoon, Yoo Bin, Yun-Sang Yu, Beom Jun Park, Sung-Jin Cho, and Soon Cheol Park. 2020. "Identification and Spatiotemporal Expression of Adenosine Deaminases Acting on RNA (ADAR) during Earthworm Regeneration: Its Possible Implication in Muscle Redifferentiation" Biology 9, no. 12: 448. https://doi.org/10.3390/biology9120448