Comprehensive Genome Analysis of Two Bioactive Brevibacterium Strains Isolated from Marine Sponges from the Red Sea
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains Isolation and Antimicrobial Activity Screening
2.2. DNA Extraction and Whole-Genome Sequencing
2.2.1. Reads Preprocessing and Assembly
2.2.2. Strain Typing and Phylogeny
2.2.3. Reference-Guided Scaffolding and Genome Annotation
2.2.4. Metabolic Pathway Reconstruction and Investigation of Biosynthetic Gene Clusters (BGCs)
2.2.5. Comparative Orthologous Cluster Analysis
3. Results
3.1. The Isolated Strains’ Phenotypic Characteristics
3.2. Antimicrobial Activities of B. luteolum 26C and B. casei 13A
3.3. Genome Characteristics and Strain Typing
3.4. B. luteolum 26C and B. casei 13A Genome Annotation and Genome Mapping
3.5. Metabolic Pathways and Biosynthetic Gene Clusters (BGCs)
3.6. Comparative Orthologous Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAI | Average Amino Acid Identity |
ANI | Average Nucleotide Identity |
ANIm | ANI using MUMmer alignment |
BGC(s) | Biosynthetic Gene Cluster(s) |
CDs/CDSs | Coding Sequences |
dDDH | Digital DNA–DNA Hybridization |
DMSO | Dimethyl Sulfoxide |
GI(s) | Genomic Island(s) |
GTDB | Genome Taxonomy Database |
GTDB-Tk | GTDB Toolkit |
MGE(s) | Mobile Genetic Element(s) |
NSW | Natural Seawater |
Prokka | Rapid Prokaryotic Genome Annotation |
TYGS | Type Strain Genome Server |
WGS | Whole-Genome Sequencing |
References
- Rasul, N.M.A.; Stewart, I.C.F. The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-45200-4. [Google Scholar]
- Pearman, J.K.; Kürten, S.; Sarma, Y.V.B.; Jones, B.H.; Carvalho, S. Biodiversity Patterns of Plankton Assemblages at the Extremes of the Red Sea. FEMS Microbiol. Ecol. 2016, 92, fiw002. [Google Scholar] [CrossRef]
- Thomas, T.; Moitinho-Silva, L.; Lurgi, M.; Björk, J.R.; Easson, C.; Astudillo-García, C.; Olson, J.B.; Erwin, P.M.; López-Legentil, S.; Luter, H.; et al. Diversity, Structure and Convergent Evolution of the Global Sponge Microbiome. Nat. Commun. 2016, 7, 11870. [Google Scholar] [CrossRef]
- Hentschel, U.; Piel, J.; Degnan, S.M.; Taylor, M.W. Genomic Insights into the Marine Sponge Microbiome. Nat. Rev. Microbiol. 2012, 10, 641–654. [Google Scholar] [CrossRef]
- Pita, L.; Rix, L.; Slaby, B.M.; Franke, A.; Hentschel, U. The Sponge Holobiont in a Changing Ocean: From Microbes to Ecosystems. Microbiome 2018, 6, 46. [Google Scholar] [CrossRef]
- Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiol. Mol. Biol. Rev. 2007, 71, 295–347. [Google Scholar] [CrossRef] [PubMed]
- Laport, M.; Santos, O.; Muricy, G. Marine Sponges: Potential Sources of New Antimicrobial Drugs. Curr. Pharm. Biotechnol. 2009, 10, 86–105. [Google Scholar] [CrossRef]
- Sedeek, A.M.; Elfeky, H.; Hanora, A.S.; Solyman, S.M. Genomic Insights into Biosynthesis and Adaptation in the Bioactive Marine Bacterium Streptomyces albidoflavus VIP-1 from the Red Sea. BMC Microbiol. 2025, 25, 372. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.L.; Hanora, A.; Solyman, S.M. Metataxonomic, Bioactivity and Microbiome Analysis of Red Sea Marine Sponges from Egypt. Mar. Genom. 2022, 61, 100920. [Google Scholar] [CrossRef]
- El Samak, M.; Lotfy, H.; Sedeek, A.M.; Mohamed, Y.S.; Solyman, S.M. Genomic Characterization of Marine Staphylococcus shinii strain SC-M1C: Potential Genetic Adaptations and Ecological Role. Microorganisms 2025, 13, 1866. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; She, J.; Fu, J.; Wang, J.; Ye, Y.; Yang, B.; Liu, Y.; Zhou, X.; Tao, H. Advances in Natural Products from the Marine-Sponge-Associated Microorganisms with Antimicrobial Activity in the Last Decade. Mar. Drugs 2023, 21, 236. [Google Scholar] [CrossRef]
- Ibrahim, J.A.A.; Botcha, S.; Prattipati, S.D. Marine Actinomycetes: A Promising Source of Novel Therapeutics and Pharmaceutical Bioactive Compounds—A Review. Microbe 2025, 7, 100383. [Google Scholar] [CrossRef]
- Lee, S.D. Brevibacterium marinum sp. Nov., Isolated from Seawater. Int. J. Syst. Evol. Microbiol. 2008, 58, 500–504. [Google Scholar] [CrossRef]
- Bhadra, B.; Raghukumar, C.; Pindi, P.K.; Shivaji, S. Brevibacterium oceani sp. Nov., Isolated from Deep-Sea Sediment of the Chagos Trench, Indian Ocean. Int. J. Syst. Evol. Microbiol. 2008, 58, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Huang, P.; Dong, C.; Deng, X. Nickel Bioaccumulation by a Marine Bacterium Brevibacterium sp. (X6) Isolated from Shenzhen Bay, China. Mar. Pollut. Bull. 2021, 170, 112656. [Google Scholar] [CrossRef] [PubMed]
- Olender, A.; Rutyna, P.; Niemcewicz, M.; Bogut, A.; Ciesielka, M.; Teresiński, G. Draft Whole-Genome Sequence of Brevibacterium casei strain Isolated from a Bloodstream Infection. Braz. J. Microbiol. 2020, 51, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Cumsille, A.; Serna-Cardona, N.; González, V.; Claverías, F.; Undabarrena, A.; Molina, V.; Salvà-Serra, F.; Moore, E.R.B.; Cámara, B. Exploring the Biosynthetic Gene Clusters in Brevibacterium: A Comparative Genomic Analysis of Diversity and Distribution. BMC Genom. 2023, 24, 622. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database. Bioinformatics 2022, 38, 5315–5316. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS Is an Automated High-Throughput Platform for State-of-the-Art Genome-Based Taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome Sequence-Based Species Delimitation with Confidence Intervals and Improved Distance Functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Rodriguez-R, L.M.; Konstantinidis, K.T. The Enveomics Collection: A Toolbox for Specialized Analyses of Microbial Genomes and Metagenomes. PeerJ Prepr. 2016, 4, e1900v1. [Google Scholar] [CrossRef]
- Alonge, M.; Soyk, S.; Ramakrishnan, S.; Wang, X.; Goodwin, S.; Sedlazeck, F.J.; Lippman, Z.B.; Schatz, M.C. RaGOO: Fast and Accurate Reference-Guided Scaffolding of Draft Genomes. Genome Biol. 2019, 20, 224. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.L.; Mullet, J.; Hindi, F.; Stoll, J.E.; Gupta, S.; Choi, M.; Keenum, I.; Vikesland, P.; Pruden, A.; Zhang, L. mobileOG-Db: A Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements. Appl. Environ. Microbiol. 2022, 88, e0099122. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S. IslandViewer 4: Expanded Prediction of Genomic Islands for Larger-Scale Datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Vader, L.; Szenei, J.; Reitz, Z.L.; Augustijn, H.E.; Cediel-Becerra, J.D.D.; de Crécy-Lagard, V.; Koetsier, R.A.; Williams, S.E.; et al. antiSMASH 8.0: Extended Gene Cluster Detection Capabilities and Analyses of Chemistry, Enzymology, and Regulation. Nucleic Acids Res. 2025, 53, W32–W38. [Google Scholar] [CrossRef]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An Integrated Platform for Exploring and Visualizing Orthologous Data across Genomes. Nucleic Acids Res. 2023, 51, W397–W403. [Google Scholar] [CrossRef]
- Ngugi, D.K.; Antunes, A.; Brune, A.; Stingl, U. Biogeography of Pelagic Bacterioplankton Across an Antagonistic Temperature—Salinity Gradient in the Red Sea. Mol. Ecol. 2012, 21, 388–405. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A Communal Catalogue Reveals Earth’s Multiscale Microbial Diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Onraedt, A.; Soetaert, W.; Vandamme, E. Industrial Importance of the Genus Brevibacterium. Biotechnol. Lett. 2005, 27, 527–533. [Google Scholar] [CrossRef]
- Al-Zereini, W.A. Bioactive Crude Extracts from Four Bacterial Isolates of Marine Sediments from Red Sea, Gulf of Aqaba, Jordan. Jordan J. Biol. Sci. 2014, 7, 133–173. [Google Scholar] [CrossRef]
- Abdel-Razik, M.A.; Azmy, A.F.; Dishisha, T.; El-Gendy, A.O.; Afzan, A.; Kamal, N.; Tawfike, A.; Sebak, M. Screening of Red Sea- and Mediterranean Sea-Derived Actinomycetes for Antimicrobial and Antitumor Activities: LC-ESI-HRMS-Based Metabolomics Study. Microb. Cell Fact. 2025, 24, 136. [Google Scholar] [CrossRef]
- El Samak, M.; Zakeer, S.; Hanora, A.; Solyman, S.M. Metagenomic and Metatranscriptomic Exploration of the Egyptian Red Sea Sponge Theonella sp. Associated Microbial Community. Mar. Genom. 2023, 70, 101032. [Google Scholar] [CrossRef]
- Sedeek, A.M.; Ismail, M.M.; Elsayed, T.R.; Ramadan, M.A. Recent Methods for Discovering Novel Bioactive Metabolites, Specifically Antimicrobial Agents, from Marine-Associated Micro-Organisms. Lett. Appl. Microbiol. 2022, 75, 511–525. [Google Scholar] [CrossRef]
- Juhas, M.; Van Der Meer, J.R.; Gaillard, M.; Harding, R.M.; Hood, D.W.; Crook, D.W. Genomic Islands: Tools of Bacterial Horizontal Gene Transfer and Evolution. FEMS Microbiol. Rev. 2009, 33, 376–393. [Google Scholar] [CrossRef] [PubMed]
- Audrey, B.; Cellier, N.; White, F.; Jacques, P.-É.; Burrus, V. A Systematic Approach to Classify and Characterize Genomic Islands Driven by Conjugative Mobility Using Protein Signatures. Nucleic Acids Res. 2023, 51, 8402–8412. [Google Scholar] [CrossRef]
- Ravcheev, D.A.; Best, A.A.; Sernova, N.V.; Kazanov, M.D.; Novichkov, P.S.; Rodionov, D.A. Genomic Reconstruction of Transcriptional Regulatory Networks in Lactic Acid Bacteria. BMC Genom. 2013, 14, 94. [Google Scholar] [CrossRef]
- Davidson, A.L.; Dassa, E.; Orelle, C.; Chen, J. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiol. Mol. Biol. Rev. MMBR 2008, 72, 317–364. [Google Scholar] [CrossRef]
- Blumer, C.; Haas, D. Mechanism, Regulation, and Ecological Role of Bacterial Cyanide Biosynthesis. Arch. Microbiol. 2000, 173, 170–177. [Google Scholar] [CrossRef]
- Newton, G.L.; Buchmeier, N.; Fahey, R.C. Biosynthesis and Functions of Mycothiol, the Unique Protective Thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. MMBR 2008, 72, 471. [Google Scholar] [CrossRef] [PubMed]
- Nies, D.H. Efflux-Mediated Heavy Metal Resistance in Prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339. [Google Scholar] [CrossRef]
- Crow, A.; Acheson, R.M.; Le Brun, N.E.; Oubrie, A. Structural basis of Redox-coupled protein substrate selection by the cytochrome c biosynthesis protein ResA. J. Biol. Chem. 2004, 279, 23654–23660. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, K.A.; Gangloff, S.; Rothstein, R. The RecQ DNA Helicases in DNA Repair. Annu. Rev. Genet. 2010, 44, 393. [Google Scholar] [CrossRef]
- Hickson, I.D. RecQ Helicases: Caretakers of the Genome. Nat. Rev. Cancer 2003, 3, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Anjou, C.; Lotoux, A.; Morvan, C.; Martin-Verstraete, I. From Ubiquity to Specificity: The Diverse Functions of Bacterial Thioredoxin Systems. Environ. Microbiol. 2024, 26, e16668. [Google Scholar] [CrossRef]
- Switzer, A.; Burchell, L.; McQuail, J.; Wigneshweraraj, S. The Adaptive Response to Long-Term Nitrogen Starvation in Escherichia coli Requires the Breakdown of Allantoin. J. Bacteriol. 2020, 202, e00172-20. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.P.; Thrash, J.C.; Nicora, C.D.; Lipton, M.S.; Burnum-Johnson, K.E.; Carini, P.; Smith, R.D.; Giovannoni, S.J. Proteomic and Transcriptomic Analyses of “Candidatus Pelagibacter ubique” Describe the First PII-Independent Response to Nitrogen Limitation in a Free-Living Alphaproteobacterium. mBio 2013, 4, e00133-12. [Google Scholar] [CrossRef]
- Gohil, N.; Ramírez-García, R.; Panchasara, H.; Patel, S.; Bhattacharjee, G.; Singh, V. Book Review: Quorum Sensing vs. Quorum Quenching: A Battle with no End in Sight; Kalia, V.C., Ed.; Springer: New Delhi, India, 2015; ISBN 978-81-322-1981-1. [Google Scholar]
- Fanelli, G.; Pasqua, M.; Colonna, B.; Prosseda, G.; Grossi, M. Expression Profile of Multidrug Resistance Efflux Pumps During Intracellular Life of Adherent-Invasive Escherichia coli strain LF82. Front. Microbiol. 2020, 11, 1935. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, A.; Sindhu, S.S.; Glick, B.R. Hydrogen Cyanide Production by Soil Bacteria: Biological Control of Pests and Promotion of Plant Growth in Sustainable Agriculture. Pedosphere 2022, 32, 15–38. [Google Scholar] [CrossRef]
- Flury, P.; Vesga, P.; Péchy-Tarr, M.; Aellen, N.; Dennert, F.; Hofer, N.; Kupferschmied, K.P.; Kupferschmied, P.; Metla, Z.; Ma, Z.; et al. Antimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 Contribute to Insect Killing. Front. Microbiol. 2017, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, C.F.; Stougaard, P. Hydrogen Cyanide Synthesis and Antifungal Activity of the Biocontrol Strain Pseudomonas fluorescens In5 from Greenland Is Highly Dependent on Growth Medium. Can. J. Microbiol. 2012, 58, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Frost, L.S.; Leplae, R.; Summers, A.O.; Toussaint, A. Mobile Genetic Elements: The Agents of Open Source Evolution. Nat. Rev. Microbiol. 2005, 3, 722–732. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Hu, Y.; Qin, J.; Yu, B. Design and Optimization of ε-Poly-l-Lysine with Specific Functions for Diverse Applications. Int. J. Biol. Macromol. 2024, 262, 129513. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Vad, B.S.; Stenvang, M.; Otzen, D.E.; Meyer, R.L. The Antimicrobial Mechanism of Action of Epsilon-Poly-L-Lysine. Appl. Environ. Microbiol. 2014, 80, 7758–7770. [Google Scholar] [CrossRef]
- Kuhlmann, A.U.; Bremer, E. Osmotically Regulated Synthesis of the Compatible Solute Ectoine in Bacillus Pasteurii and Related Bacillus spp. Appl. Environ. Microbiol. 2002, 68, 772–783. [Google Scholar] [CrossRef]
- Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial Mercury Resistance from Atoms to Ecosystems. FEMS Microbiol. Rev. 2003, 27, 355–384. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.; Bhattacharyya, T.; Bhando, T.; Pathania, R. Fosfomycin Resistance in Acinetobacter baumannii Is Mediated by Efflux Through a Major Facilitator Superfamily (MFS) Transporter—AbaF. J. Antimicrob. Chemother. 2017, 72, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Nishino, K.; Nikaido, E.; Yamaguchi, A. Regulation of Multidrug Efflux Systems Involved in Multidrug and Metal Resistance of Salmonella enterica Serovar Typhimurium. J. Bacteriol. 2007, 189, 9066–9075. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Gourbeyre, E.; Chandler, M. Bacterial Insertion Sequences: Their Genomic Impact and Diversity. FEMS Microbiol. Rev. 2014, 38, 865–891. [Google Scholar] [CrossRef] [PubMed]
- Kabiraj, A.; Biswas, R.; Halder, U.; Bandopadhyay, R. Bacterial Arsenic Metabolism and Its Role in Arsenic Bioremediation. Curr. Microbiol. 2022, 79, 131. [Google Scholar] [CrossRef]
- Roberts, R.J.; Vincze, T.; Posfai, J.; Macelis, D. REBASE—A Database for DNA Restriction and Modification: Enzymes, Genes and Genomes. Nucleic Acids Res. 2015, 43, D298–D299. [Google Scholar] [CrossRef]
Strain | Accession | Isolation Source | Genome Size | Assembly Level |
---|---|---|---|---|
Brevibacterium luteolum strain NEB1784 | GCF_011462075.1 | Contamination in NEB collection | 3.2 Mb | Complete |
Brevibacterium luteolum strain DMY-1 | GCF_048832885.1 | Livestock wastewater | 3.1 Mb | Complete |
Brevibacterium casei strain G20 | GCA_019720815.1 | Insect-associated | 3.9 Mb | Complete |
Brevibacterium casei strain OG2 | GCF_002276605.1 | Fermented milk | 3.9 Mb | Contigs |
Feature | B. luteolum 26C | B. casei 13A |
---|---|---|
Colony Color | Yellowish | Grayish-white |
Odor | Cheese-like | Cheese-like |
Colony Texture and Shape | Smooth, rounded | Smooth, rounded |
Microscopic Arrangement | Club-shaped bacilli in V/Y-shaped clumps | Diphtheroid-like rods |
Incubation Time (on Marine Agar) | ~1–2 days | ~24 h (1 day) |
Staphylococcus aureus | Escherichia coli | Pseudomonas aeruginosa | Candida albicans | |
---|---|---|---|---|
26C | 15 | 13 | - | 17 |
13A | 17 | 15 | - | 15 |
Nystatin | - | - | - | 30 |
Ampicillin | 30 | - | - | - |
Imipenim | - | 29 | 27 | - |
Cetazidim | - | 28 | 20 | - |
B. luteolum 26C | B. casei 13A | |||
---|---|---|---|---|
RAST | Prokka | RAST | Prokka | |
Total CDs | 2672 | 2622 | 3449 | 3287 |
CDs with functional assignment | 1786 | 1547 | 2416 | 1045 |
Hypothetical CDs | 886 | 1075 | 1033 | 1371 |
rRNA | 0 | 0 | 3 | 2 |
tRNA | 45 | 52 | 49 | 53 |
EC assignment | 711 | 994 | 849 | 1165 |
Genomic Island Number | Size (bp) | Gene Name | Product |
---|---|---|---|
1 | 13,875 | allE | (S)-ureidoglycine aminohydrolase |
allB | Allantoinase | ||
gntR | Putative D-xylose utilization operon transcriptional repressor | ||
nikB | Nickel transport system permease protein NikB | ||
Putative ABC transporter ATP-binding protein | |||
Putative ABC transporter ATP-binding protein | |||
sgrR | HTH-type transcriptional regulator SgrR | ||
8-oxoguanine deaminase | |||
hyuE | Hydantoin racemase | ||
atzC | N-isopropylammelide isopropyl amidohydrolase | ||
2 | 16,179 | moeZ | Putative adenylyltransferase/sulfurtransferase MoeZ |
thiG | Thiazole synthase | ||
hcnC | Hydrogen cyanide synthase subunit HcnC | ||
mshD | Mycothiol acetyltransferase | ||
IS256 | IS256 family transposase ISBli22 | ||
menH | 2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylate synthase | ||
mrpD | Na(+)/H(+) antiporter subunit D | ||
mrpC | Na(+)/H(+) antiporter subunit C | ||
ndhB | NAD(P)H-quinone oxidoreductase subunit 2, chloroplastic | ||
mshA | D-inositol-3-phosphate glycosyltransferase | ||
gpmB | Phosphoglycerate mutase GpmB | ||
rsfS | Ribosomal silencing factor RsfS | ||
3 | 11,816 | appA | Oligopeptide-binding protein AppA |
IS1380 | IS1380 family transposase IS1677 | ||
Insertion element IS6110 uncharacterized 12.0 kDa protein | |||
IS3 | IS3 family transposase ISBli28 | ||
IS256 | IS256 family transposase ISBli22 | ||
smpB | SsrA-binding protein | ||
4 | 10,747 | Homocitrate synthase | |
IS3 | IS3 family transposase ISBli33 | ||
IS3 | IS3 family transposase ISBli33 | ||
Insertion element IS6110 uncharacterized 12.0 kDa protein | |||
IS5 | IS5 family transposase ISCgl5 | ||
gabT | 4-aminobutyrate aminotransferase | ||
5 | 6619 | Homocitrate synthase | |
IS3 | IS3 family transposase ISBli33 | ||
IS3 | IS3 family transposase ISBli33 | ||
Insertion element IS6110 uncharacterized 12.0 kDa protein | |||
6 | 6953 | cwhA | N-acetylmuramoyl-L-alanine amidase A |
merR1 | Mercuric resistance operon regulatory protein | ||
merA | Mercuric reductase | ||
7 | 14,646 | insK | Putative transposase InsK for insertion sequence element IS150 |
IS3 | IS3 family transposase ISBli17 | ||
IS3 | IS3 family transposase ISBli35 | ||
IS3 | IS3 family transposase ISAar26 | ||
IS3 | IS3 family transposase ISBli17 | ||
IS3 | IS3 family transposase ISBli35 | ||
cypB | Peptidyl-prolyl cis-trans isomerase B | ||
glpG | Rhomboid protease GlpG | ||
crgA | Cell division protein CrgA | ||
8 | 43,035 | scmP | N-acetylcysteine deacetylase |
ipuC | Glutamate–isopropylamine ligase | ||
murR | HTH-type transcriptional regulator MurR | ||
cadA | Inducible lysine decarboxylase | ||
2-aminohexano-6-lactam racemase | |||
pup | Putrescine importer PuuP | ||
uvrB | UvrABC system protein B | ||
nudG | CTP pyrophosphohydrolase | ||
fdhA | Formate dehydrogenase subunit alpha | ||
fdnG | Formate dehydrogenase 2 subunit alpha (cytochrome c-553) | ||
rsxB | Ion-translocating oxidoreductase complex subunit B | ||
recQ | ATP-dependent DNA helicase RecQ | ||
selD | Selenide, water dikinase | ||
selA | L-seryl-tRNA(Sec) selenium transferase | ||
selB | Selenocysteine-specific elongation factor | ||
Mct | 2-methylfumaryl-CoA isomerase | ||
Meh | Mesaconyl-C(4)-CoA hydratase | ||
mmgC | Acyl-CoA dehydrogenase | ||
mmgC | Acyl-CoA dehydrogenase | ||
fumB | Fumarate hydratase class I, anaerobic | ||
yfdE | Acetyl-CoA:oxalate CoA-transferase | ||
glaR | HTH-type transcriptional repressor GlaR | ||
dctP | C4-dicarboxylate-binding periplasmic protein DctP | ||
dctM | C4-dicarboxylate TRAP transporter large permease protein DctM | ||
ISL3 | ISL3 family transposase ISPfr18 | ||
S-(hydroxymethyl)mycothiol dehydrogenase | |||
camD | 5-exo-hydroxycamphor dehydrogenase | ||
ahlD | N-acyl homoserine lactonase | ||
9 | 6942 | fumB | Fumarate hydratase class I, anaerobic |
yfdE | Acetyl-CoA:oxalate CoA-transferase | ||
glaR | HTH-type transcriptional repressor GlaR | ||
dctP | C4-dicarboxylate-binding periplasmic protein DctP | ||
dctM | C4-dicarboxylate TRAP transporter large permease protein DctM | ||
10 | 9351 | Insertion element IS6110 uncharacterized 12.0 kDa protein | |
IS3 | IS3 family transposase IS3501 | ||
Insertion element IS6110 uncharacterized 12.0 kDa protein | |||
11 | 27,035 | czcD | Cadmium, cobalt and zinc/H(+)-K(+) antiporter |
cmtR | HTH-type transcriptional regulator CmtR | ||
COQ5 | 2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial | ||
lspA | Lipoprotein signal peptidase | ||
IS3 | IS3 family transposase ISBli33 | ||
Insertion element IS6110 uncharacterized 12.0 kDa protein | |||
IS3 | IS3 family transposase ISBli33 | ||
resA | Thiol-disulfide oxidoreductase ResA | ||
czcD | Cadmium, cobalt, and zinc/H(+)-K(+) antiporter | ||
cseB | Transcriptional regulatory protein CseB | ||
sasA | Adaptive-response sensory-kinase SasA | ||
copB | Copper-exporting P-type ATPase B | ||
Idi | Isopentenyl-diphosphate Delta-isomerase | ||
12 | 6694 | cmtR | HTH-type transcriptional regulator CmtR |
COQ5 | 2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial | ||
lspA | Lipoprotein signal peptidase | ||
IS3 | IS3 family transposase ISBli33 | ||
Insertion element IS6110 uncharacterized 12.0 kDa protein | |||
IS3 | IS3 family transposase ISBli33 |
Genomic Island Number | Size (bp) | Gene Name | Product |
---|---|---|---|
1 | 4136 | yknY_1 | Putative ABC transporter ATP-binding protein YknY |
2 | 12,733 | bspRIM | Modification methylase BspRI |
3 | 11,620 | yegS_2 | Lipid kinase YegS |
Insertion element IS6110 uncharacterized 12.0 kDa protein | |||
IS3 | IS3 family transposase ISBli25 | ||
yegS_1 | lipid kinase YegS | ||
serS | Serine–tRNA ligase | ||
4 | 27,730 | prfB | Peptide chain release factor 2 |
ftsE | Cell division ATP-binding protein FtsE | ||
ftsX | Cell division protein FtsX | ||
smpB | SsrA-binding protein | ||
Putative prophage phiRv2 integrase | |||
arsC2 | Arsenate-mycothiol transferase ArsC2 | ||
srpC_3 | Putative chromate transport protein | ||
xerC_2 | Tyrosine recombinase XerC | ||
rhaR_3 | HTH-type transcriptional activator RhaR | ||
copZ_2 | Copper chaperone CopZ | ||
ctpA | Copper-exporting P-type ATPase | ||
5 | 7010 | rhaR_3 | HTH-type transcriptional activator RhaR |
6 | 4036 | fpg1_2 | Formamidopyrimidine-DNA glycosylase 1 |
merR1 | Mercuric resistance operon regulatory protein | ||
merA | Mercuric reductase | ||
merB | Alkylmercury lyase | ||
7 | 6926 | lspA_2 | Lipoprotein signal peptidase |
ctpG | Putative cation-transporting ATPase G | ||
cmtR_1 | HTH-type transcriptional regulator CmtR | ||
cueR | HTH-type transcriptional regulator CueR | ||
fpg1_1 | Formamidopyrimidine-DNA glycosylase 1 | ||
srpC_1 | Putative chromate transport protein | ||
8 | 17,165 | rpoD_2 | RNA polymerase sigma factor RpoD |
addA | ATP-dependent helicase/nuclease subunit A | ||
9 | 31,029 | IS3 | IS3 family transposase ISBli35 |
IS3 | IS3 family transposase ISBli35 | ||
recD2 | ATP-dependent RecD-like DNA helicase | ||
uvrB_2 | UvrABC system protein B | ||
yfeO | Putative ion-transport protein YfeO | ||
11 | 10,728 | Putative prophage phiRv2 integrase | |
metF | 5,10-methylenetetrahydrofolate reductase | ||
12 | 56,608 | yidC_2 | Membrane protein insertase YidC |
cpdA_2 | 3′,5′-cyclic adenosine monophosphate phosphodiesterase CpdA | ||
Sulfurtransferase | |||
gloB_3 | Hydroxyacylglutathione hydrolase | ||
gloB_4 | Hydroxyacylglutathione hydrolase | ||
ricR_2 | Copper-sensing transcriptional repressor RicR | ||
hcaD | 3-phenylpropionate/cinnamic acid dioxygenase ferredoxin--NAD(+) reductase component | ||
mdtL | Multidrug resistance protein MdtL | ||
Ferredoxin | |||
ydhK | Putative protein YdhK | ||
copB_2 | Copper-exporting P-type ATPase B | ||
ricR_3 | Copper-sensing transcriptional repressor RicR | ||
ahpD_2 | Alkyl hydroperoxide reductase AhpD | ||
czcD_2 | Cadmium, cobalt, and zinc/H(+)-K(+) antiporter | ||
trxA_3 | Thioredoxin 1 | ||
IS3 | IS3 family transposase ISBli33 | ||
IS3 | IS3 family transposase ISBli33 | ||
ISL3 | ISL3 family transposase ISAar42 | ||
ISL3 | ISL3 family transposase ISBli30 | ||
trxC_2 | Putative thioredoxin 2 | ||
gloB_5 | Hydroxyacylglutathione hydrolase | ||
ygaP | Inner membrane protein YgaP | ||
tnpR | Transposon Tn3 resolvase | ||
cmtR_2 | HTH-type transcriptional regulator CmtR | ||
13 | 17,769 | ISL3 | ISL3 family transposase ISAar42 |
ISL3 | ISL3 family transposase ISBli30 | ||
trxC_2 | Putative thioredoxin 2 | ||
14 | 6653 | tnpR | Transposon Tn3 resolvase |
cmtR_2 | HTH-type transcriptional regulator CmtR |
Category | Number of Genes | |
---|---|---|
B. luteolum 26C | B. casei 13A | |
Integration/excision | 28 | 7 |
Replication/recombination/repair | 17 | 23 |
Phage | 12 | 9 |
Stability/transfer/defense | 7 | 4 |
Transfer | 3 | 6 |
Total | 67 | 49 |
Cluster | Type | Size (bp) | Most Similar Known Cluster | Similarity | 26C | 13A |
---|---|---|---|---|---|---|
1 | NAGGN | 15,198 | - | - | ✔ | ✘ |
2 | NAPAA | 39,023–42,821 | ε-poly-L-lysine | High | ✔ | ✔ |
3 | Tropodithietic acid | 42,257 | 5-dimethylallylindole-3-acetonitrile | Medium | ✔ | ✘ |
4 | Terpene | 25,204 | Carotenoid | Medium | ✘ | ✔ |
5 | Terpene | 23,296 | Carotenoid | Low | ✔ | ✘ |
6 | Hydrogen cyanide | 13,141 | - | - | ✘ | ✔ |
7 | Ectoine | 10,401 | Ectoine | Medium | ✘ | ✔ |
8 | NI-siderophore | 30,594 | FW0622 | Low | ✘ | ✔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, Y.S.; Solyman, S.M.; Sedeek, A.M.; Kamel, H.L.; El Samak, M. Comprehensive Genome Analysis of Two Bioactive Brevibacterium Strains Isolated from Marine Sponges from the Red Sea. Biology 2025, 14, 1271. https://doi.org/10.3390/biology14091271
Mohamed YS, Solyman SM, Sedeek AM, Kamel HL, El Samak M. Comprehensive Genome Analysis of Two Bioactive Brevibacterium Strains Isolated from Marine Sponges from the Red Sea. Biology. 2025; 14(9):1271. https://doi.org/10.3390/biology14091271
Chicago/Turabian StyleMohamed, Yehia S., Samar M. Solyman, Abdelrahman M. Sedeek, Hasnaa L. Kamel, and Manar El Samak. 2025. "Comprehensive Genome Analysis of Two Bioactive Brevibacterium Strains Isolated from Marine Sponges from the Red Sea" Biology 14, no. 9: 1271. https://doi.org/10.3390/biology14091271
APA StyleMohamed, Y. S., Solyman, S. M., Sedeek, A. M., Kamel, H. L., & El Samak, M. (2025). Comprehensive Genome Analysis of Two Bioactive Brevibacterium Strains Isolated from Marine Sponges from the Red Sea. Biology, 14(9), 1271. https://doi.org/10.3390/biology14091271