Neuroprotective Effects of Low-Intensity Pulsed Ultrasound in Chronic Traumatic Encephalopathy Induced by Repetitive Head Collisions: A Narrative Review
Simple Summary
Abstract
1. Introduction
2. Effect of LIPUS on Regulating Neuroinflammation in CTE
3. Effect of LIPUS on Improving Endothelial Cell Function in CTE
4. LIPUS Treatment on Tau Protein Modification in CTE—A Possible Molecular Interaction
5. Effect of LIPUS on Reducing Oxidative Stress in CTE
6. The Effect of LIPUS in Drug Delivery for Improving Neuroinflammation in CTE
7. Biological Mechanisms: From Animal Studies to Human Care
8. Clinical Applicability and Safety Profile
9. Limitations of LIPUS Use
10. Alternative Approaches to Treat CTE Beyond LIPUS
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CTE | Chronic traumatic encephalopathy |
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
LIPUS | Low-intensity pulsed ultrasound |
BBB | Blood–brain barrier |
FNDC5 | Fibronectin type III domain-containing protein 5 |
ROCK1 | rho-associated, coiled-coil-containing protein kinase 1 |
p-MLC2 | Phosphorylated myosin light chain 2 |
ZO-1 | Zonula occludens-1 |
AKT | Protein kinase B |
IL | Interleukin |
TNF-α | Tumor necrosis factor alpha |
Cav.1 | Caveolin-1 |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular signal-regulated kinase |
TLR-4 | Toll-like receptor 4 |
NF-kB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NO | Nitric oxide |
TGF-β | Transforming growth factor beta |
FAK | Focal adhesion kinase |
GSK-3β | Glycogen synthase kinase 3 beta |
JNK | c-Jun N-terminal kinase |
CDK5 | Cyclin-dependent kinase 5 |
DYRK1A | Dual-specificity tyrosine phosphorylation-regulated kinase 1A |
CaMKII | Calcium/calmodulin-dependent protein kinase II |
PP2A | Protein Phosphatase 2A |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
UPR | Unfolded protein response |
CHOP | C/EBP homologous protein |
BDNF | Brain-derived neurotrophic factor |
GLUT1 | Glucose transporter 1 |
VEGF | Vascular endothelial growth factor |
eNOS | Endothelial nitric oxide synthase |
eIF2α | Eukaryotic translation initiation factor 2 |
References
- Zuidema, T.R.; Hou, J.; Kercher, K.A.; Recht, G.O.; Sweeney, S.H.; Chenchaiah, N.; Cheng, H.; Steinfeldt, J.A.; Kawata, K. Cerebral Cortical Surface Structure and Neural Activation Pattern Among Adolescent Football Players. JAMA Netw. Open. 2024, 7, e2354235. [Google Scholar] [CrossRef]
- Solar, K.G.; Ventresca, M.; Zamyadi, R.; Zhang, J.; Jetly, R.; Vartanian, O.; Rhind, S.G.; Dunkley, B.T. Repetitive subconcussion results in disrupted neural activity independent of concussion history. Brain Commun. 2024, 6, fcae348. [Google Scholar] [CrossRef]
- Baugh, C.M.; Stamm, J.M.; Riley, D.O.; Gavett, B.E.; Shenton, M.E.; Lin, A.; Nowinski, C.J.; Cantu, R.C.; McKee, A.C.; Stern, R.A. Chronic traumatic encephalopathy: Neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav. 2012, 6, 244–254. [Google Scholar] [CrossRef]
- McKee, A.C.; Mez, J.; Abdolmohammadi, B.; Butler, M.; Huber, B.R.; Uretsky, M.; Babcock, K.; Cherry, J.D.; Alvarez, V.E.; Martin, B.; et al. Neuropathologic and clinical findings in young contact sport athletes exposed to repetitive head impacts. JAMA Neurol. 2023, 80, 1037–1050. [Google Scholar] [CrossRef]
- Martland, H.S. Punch Drunk. J. Am. Med. Assoc. 1928, 91, 1103–1107. [Google Scholar] [CrossRef]
- Tharmaratnam, T.; Iskandar, M.A.; Tabobondung, T.C.; Tobbia, I.; Gopee-Ramanan, P.; Tabobondung, T.A. Chronic Traumatic Encephalopathy in Professional American Football Players: Where Are We Now? Front. Neurol. 2018, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Stein, T.D.; Kiernan, P.T.; Alvarez, V.E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 2015, 25, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Kulbe, J.R.; Hall, E.D. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog. Neurobiol. 2017, 158, 15–44. [Google Scholar] [CrossRef] [PubMed]
- Tracy, T.E.; Gan, L. Acetylated tau in Alzheimer’s disease: An instigator of synaptic dysfunction underlying memory loss: Increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy. Bioessays 2017, 39, 201600224. [Google Scholar] [CrossRef]
- Talavage, T.M.; Nauman, E.A.; Breedlove, E.L.; Yoruk, U.; Dye, A.E.; Morigaki, K.E.; Feuer, H.; Leverenz, L.J. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J. Neurotrauma 2014, 31, 327–338. [Google Scholar] [CrossRef]
- Mez, J.; Daneshvar, D.H.; Kiernan, P.T.; Abdolmohammadi, B.; Alvarez, V.E.; Huber, B.R.; Alosco, M.L.; Solomon, T.M.; Nowinski, C.J.; McHale, L.; et al. Clinicopathological Evaluation of Chronic Traumatic Encephalopathy in Players of American Football. JAMA 2017, 318, 360–370. [Google Scholar] [CrossRef]
- Newman, P.G.; Rozycki, G.S. The history of ultrasound. Surg. Clin. N. Am. 1998, 78, 179–195. [Google Scholar] [CrossRef]
- Jiang, X.; Savchenko, O.; Li, Y.; Qi, S.; Yang, T.; Zhang, W.; Chen, J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans. Biomed. Eng. 2019, 66, 2704–2718. [Google Scholar] [CrossRef] [PubMed]
- Harvey, E.N. The effect of high frequency sound waves on heart muscle and other irritable tissues. Am. J. Physiol. 1929, 91, 284–290. [Google Scholar] [CrossRef]
- Aimaijiang, M.; Liu, Y.; Zhang, Z.; Qin, Q.; Liu, M.; Abulikemu, P.; Liu, L.; Zhou, Y. LIPUS as a potential strategy for periodontitis treatment: A review of the mechanisms. Front. Bioeng. Biotechnol. 2023, 11, 1018012. [Google Scholar] [CrossRef]
- Collins, M.N.; Mesce, K.A. A review of the bioeffects of low-intensity focused ultrasound and the benefits of a cellular approach. Front. Physiol. 2022, 13, 1047324. [Google Scholar] [CrossRef]
- Halle, J.S.; Scoville, C.R.; Greathouse, D.G. Ultrasound’s effect on the conduction latency of the superficial radial nerve in man. Phys. Ther. 1981, 61, 345–350. [Google Scholar] [CrossRef]
- Huang, A.P.; Lai, D.M.; Hsu, Y.H.; Kung, Y.; Lan, C.; Yeh, C.S.; Tsai, H.H.; Lin, C.F.; Chen, W.S. Cavitation-induced traumatic cerebral contusion and intracerebral hemorrhage in the rat brain by using an off-the-shelf clinical shockwave device. Sci. Rep. 2019, 9, 15614. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Meng, Y.; Pople, C.B.; Bethune, A.; Jones, R.M.; Abrahao, A.; Hamani, C.; Kalia, S.K.; Kalia, L.V.; Lipsman, N.; et al. Cavitation Feedback Control of Focused Ultrasound Blood-Brain Barrier Opening for Drug Delivery in Patients with Parkinson’s Disease. Pharmaceutics 2022, 14, 2607. [Google Scholar] [CrossRef]
- Darmani, G.; Bergmann, T.O.; Pauly, K.B.; Caskey, C.F.; de Lecea, L.; Fomenko, A.; Fouragnan, E.; Legon, W.; Murphy, K.R.; Nandi, T.; et al. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin. Neurophysiol. 2022, 135, 51–73. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Zhang, L.; Yao, H.; Zhu, H.; Zhao, N.; Peng, X.; Yang, K. Neuroprotective Effect of Low-Intensity Pulsed Ultrasound on the Mouse MPTP/MPP+ Model of Dopaminergic Neuron Injury. Ultrasound Med. Biol. 2021, 47, 2321–2330. [Google Scholar] [CrossRef]
- Song, D.; Chen, X.; Zhou, N.; Yuan, Y.; Geng, S.; Zhang, C.; Zhao, Z.; Wang, X.; Bao, X.; Lan, X.; et al. Low-intensity pulsed ultrasound triggers a beneficial neuromodulation in dementia mice with chronic cerebral hypoperfusion via activation of hippocampal Fndc5/irisin signaling. J. Transl. Med. 2023, 21, 139. [Google Scholar] [CrossRef]
- Liu, Y.C.; Su, W.S.; Hung, T.H.; Yang, F.Y. Low-Intensity Pulsed Ultrasound Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity by Upregulating Neurotrophic Factors. Ultrasound Med. Biol. 2024, 50, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yong, Y.; Qiao, C.; Jiang, H.; Lin, J.; Wei, J.; Zhou, Y.; Li, F. Low-Intensity Pulsed Ultrasound Dynamically Modulates the Migration of BV2 Microglia. Ultrasound Med. Biol. 2025, 51, 494–507. [Google Scholar] [CrossRef]
- Sabbagh, A.; Beccaria, K.; Ling, X.; Marisetty, A.; Ott, M.; Caruso, H.; Barton, E.; Kong, L.Y.; Fang, D.; Latha, K.; et al. Opening of the Blood-Brain Barrier Using Low-Intensity Pulsed Ultrasound Enhances Responses to Immunotherapy in Preclinical Glioma Models. Clin. Cancer Res. 2021, 27, 4325–4337. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Gallego, J.; Tirko, N.N.; Greaser, J.; Bashe, D.; Patel, R.; Shaker, E.; Van Valkenburg, G.E.; Alsubhi, A.S.; Wellman, S.; et al. Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat. Commun. 2024, 15, 5512. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Liang, B.; Yan, K.; Zhang, G.; Zhuo, J.; Cai, Y. Low-Intensity Pulsed Ultrasound: A Physical Stimulus with Immunomodulatory and Anti-inflammatory Potential. Ann. Biomed. Eng. 2024, 52, 1955–1981. [Google Scholar] [CrossRef]
- Su, W.S.; Wu, C.H.; Chen, S.F.; Yang, F.Y. Low-intensity pulsed ultrasound improves behavioral and histological outcomes after experimental traumatic brain injury. Sci. Rep. 2017, 7, 15524. [Google Scholar] [CrossRef]
- Uddin, S.M.; Richbourgh, B.; Ding, Y.; Hettinghouse, A.; Komatsu, D.E.; Qin, Y.X.; Liu, C.J. Chondro-protective effects of low intensity pulsed ultrasound. Osteoarthr. Cartil. 2016, 24, 1989–1998. [Google Scholar] [CrossRef] [PubMed]
- Iacoponi, F.; Cafarelli, A.; Fontana, F.; Pratellesi, T.; Dumont, E.; Barravecchia, I.; Angeloni, D.; Ricotti, L. Optimal low-intensity pulsed ultrasound stimulation for promoting anti-inflammatory effects in macrophages. APL Bioeng. 2023, 7, 016114. [Google Scholar] [CrossRef]
- Su, Z.; Xu, T.; Wang, Y.; Guo, X.; Tu, J.; Zhang, D.; Kong, X.; Sheng, Y.; Sun, W. Low-intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling-mediated endoplasmic reticulum stress in human endothelial cells. Mol. Med. Rep. 2019, 19, 4645–4654. [Google Scholar] [CrossRef]
- Oates, J.C. The biology of reactive intermediates in systemic lupus erythematosus. Autoimmunity 2010, 43, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.T.; Huang, C.C.; Chiu, W.T. Low-intensity pulsed ultrasound reduces oxidative and endoplasmic reticulum stress in motor neuron cells. Ultrasonics 2025, 146, 107499. [Google Scholar] [CrossRef]
- Muradashvili, N.; Tyagi, S.C.; Lominadze, D. Localization of Fibrinogen in the Vasculo-Astrocyte Interface after Cortical Contusion Injury in Mice. Brain Sci. 2017, 7, 77. [Google Scholar] [CrossRef]
- Xiong, Y.; Mahmood, A.; Chopp, M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin. J. Traumatol. 2018, 21, 137–151. [Google Scholar] [CrossRef]
- Kumar, A.; Loane, D.J. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav. Immun. 2012, 26, 1191–1201. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Lin, J.; Sun, X.; Ding, Q. Exosomes Derived From Low-Intensity Pulsed Ultrasound-Treated Dendritic Cells Suppress Tumor Necrosis Factor-Induced Endothelial Inflammation. J. Ultrasound Med. 2019, 38, 2081–2091. [Google Scholar] [CrossRef]
- Suchkova, V.N.; Baggs, R.B.; Sahni, S.K.; Francis, C.W. Ultrasound improves tissue perfusion in ischemic tissue through a nitric oxide dependent mechanism. Thromb. Haemost. 2002, 88, 865–870. [Google Scholar] [CrossRef]
- Shindo, T.; Ito, K.; Ogata, T.; Hatanaka, K.; Kurosawa, R.; Eguchi, K.; Kagaya, Y.; Hanawa, K.; Aizawa, K.; Shiroto, T.; et al. Low-Intensity Pulsed Ultrasound Enhances Angiogenesis and Ameliorates Left Ventricular Dysfunction in a Mouse Model of Acute Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lin, Z.; Wang, K.; Liu, X.; Zhou, W.; Meng, L.; Huang, J.; Yuan, K.; Niu, L.; Zheng, H. Transcranial Low-Intensity Pulsed Ultrasound Modulates Structural and Functional Synaptic Plasticity in Rat Hippocampus. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.Y.; Chen, Y.M.; Wang, Y.F.; Wang, Y.Q.; Hu, J.Q.; Tang, W.X.; Feng, Y.; Cheng, Q.; Xue, L. L-Type Calcium Channel Modulates Low-Intensity Pulsed Ultrasound-Induced Excitation in Cultured Hippocampal Neurons. Neurosci. Bull. 2024, 40, 921–936. [Google Scholar] [CrossRef]
- Su, W.S.; Wu, C.H.; Song, W.S.; Chen, S.F.; Yang, F.Y. Low-intensity pulsed ultrasound ameliorates glia-mediated inflammation and neuronal damage in experimental intracerebral hemorrhage conditions. J. Transl. Med. 2023, 21, 565. [Google Scholar] [CrossRef]
- Yoo, S.; Mittelstein, D.R.; Hurt, R.C.; Lacroix, J.; Shapiro, M.G. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 2022, 13, 493. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, Q.; Zhu, S.; Wu, Q.; Zhu, R.; Zhong, H.; Xing, C.; Qu, H.; Wang, D.; Li, B.; et al. Low-intensity pulsed ultrasound regulates proliferation and differentiation of neural stem cells through notch signaling pathway. Biochem. Biophys. Res. Commun. 2020, 526, 793–798. [Google Scholar] [CrossRef]
- Huang, X.; Lin, Z.; Meng, L.; Wang, K.; Liu, X.; Zhou, W.; Zheng, H.; Niu, L. Non-invasive Low-Intensity Pulsed Ultrasound Modulates Primary Cilia of Rat Hippocampal Neurons. Ultrasound Med. Biol. 2019, 45, 1274–1283. [Google Scholar] [CrossRef]
- Wen, J.; Deng, X.; Huang, C.; An, Z.; Liu, M. Low-Intensity Pulsed Ultrasound Enhanced Neurite Guidance Growth through Netrin-1/DCC Signal Pathway in Primary Cultured Cortical Neurons of Rats. ACS Chem. Neurosci. 2021, 12, 1931–1939. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Wang, B.; Zhang, C.; Yuan, Y.; Xu, R.; Ji, H.; Zhang, X. Low-Intensity Pulsed Ultrasound Promotes Oligodendrocyte Maturation and Remyelination by Down-regulating the Interleukin-17A/Notch1 Signaling Pathway in Mice with Ischemic Stroke. Research 2025, 8, 0676. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Niu, L.; Meng, L.; Lin, Z.; Zhou, W.; Liu, X.; Huang, J.; Abbott, D.; Zheng, H. Transcranial Low-Intensity Pulsed Ultrasound Stimulation Induces Neuronal Autophagy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Villalba, N.; Sackheim, A.M.; Nunez, I.A.; Hill-Eubanks, D.C.; Nelson, M.T.; Wellman, G.C.; Freeman, K. Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase. J. Neurotrauma 2017, 34, 192–203. [Google Scholar] [CrossRef]
- Badaut, J.; Ajao, D.O.; Sorensen, D.W.; Fukuda, A.M.; Pellerin, L. Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: Signs of blood-brain barrier healing? Neuroscience 2015, 285, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Manias, J.L.; Stewart, D.J. Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol. Appl. Neurobiol. 2009, 35, 417–426. [Google Scholar] [CrossRef]
- Egawa, J.; Schilling, J.M.; Cui, W.; Posadas, E.; Sawada, A.; Alas, B.; Zemljic-Harpf, A.E.; Fannon-Pavlich, M.J.; Mandyam, C.D.; Roth, D.M.; et al. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. FASEB J. 2017, 31, 3403–3411. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.; Wu, S.; Dong, Y.; Chen, X.; Wang, S.; Li, X.; Zou, C. Review on experimental study and clinical application of low-intensity pulsed ultrasound in inflammation. Quant. Imaging Med. Surg. 2021, 11, 443–462. [Google Scholar] [CrossRef]
- Taleski, G.; Sontag, E. Protein phosphatase 2A and tau: An orchestrated ‘Pas de Deux’. FEBS Lett. 2018, 592, 1079–1095. [Google Scholar] [CrossRef]
- Pszczołowska, M.; Walczak, K.; Miśków, W.; Antosz, K.; Batko, J.; Kurpas, D.; Leszek, J. Chronic Traumatic Encephalopathy as the Course of Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 4639. [Google Scholar] [CrossRef] [PubMed]
- Michel, G.; Mercken, M.; Murayama, M.; Noguchi, K.; Ishiguro, K.; Imahori, K.; Takashima, A. Characterization of tau phosphorylation in glycogen synthase kinase-3beta and cyclin dependent kinase-5 activator (p23) transfected cells. Biochim. Biophys. Acta 1998, 1380, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Sayas, C.L.; Ávila, J. GSK-3 and Tau: A Key Duet in Alzheimer’s Disease. Cells 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Chen, X.; Du, N.; Geng, S.; Hu, Y.; Liu, X.; Wu, X.; Lin, Y.; Bai, X.; Yin, W.; et al. Low-intensity pulsed ultrasound promotes Schwann cell viability and proliferation via the GSK-3β/β-catenin signaling pathway. Int. J. Biol. Sci. 2018, 14, 497–507. [Google Scholar] [CrossRef]
- Lovestone, S.; Reynolds, C.H.; Latimer, D.; Davis, D.R.; Anderton, B.H.; Gallo, J.M.; Hanger, D.; Mulot, S.; Marquardt, B.; Stabel, S.; et al. Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr. Biol. 1994, 4, 1077–1086. [Google Scholar] [CrossRef]
- Wagner, U.; Utton, M.; Gallo, J.M.; Miller, C.C.J. Cellular phosphorylation of tau by GSK-3β influences tau binding to microtubules and microtubule organisation. J. Cell Sci. 1996, 109, 1537–1543. [Google Scholar] [CrossRef]
- Moszczynski, A.J.; Strong, W.; Xu, K.; McKee, A.; Brown, A.; Strong, M.J. Pathologic Thr 175 tau phosphorylation in CTE and CTE with ALS. Neurology 2018, 90, e380–e387. [Google Scholar] [CrossRef]
- Seo, J.S.; Lee, S.; Shin, J.Y.; Hwang, Y.J.; Cho, H.; Yoo, S.K.; Kim, Y.; Lim, S.; Kim, Y.K.; Hwang, E.M.; et al. Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy. Exp. Mol. Med. 2017, 49, e333. [Google Scholar] [CrossRef]
- Ferrer, I.; Blanco, R.; Carmona, M.; Puig, B. Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J. Neural Transm. 2001, 108, 1397–1415. [Google Scholar]
- Kusuyama, J.; Bandow, K.; Shamoto, M.; Kakimoto, K.; Ohnishi, T.; Matsuguchi, T. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J. Biol. Chem. 2014, 289, 10330–10344. [Google Scholar] [CrossRef]
- Lucke-Wold, B.P.; Turner, R.C.; Logsdon, A.F.; Bailes, J.E.; Huber, J.D.; Rosen, C.L. Linking traumatic brain injury to chronic traumatic encephalopathy: Identification of potential mechanisms leading to neurofibrillary tangle development. J. Neurotrauma 2014, 31, 1129–1138. [Google Scholar] [CrossRef]
- Tran, H.T.; Sanchez, L.; Brody, D.L. Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J. Neuropathol. Exp. Neurol. 2012, 71, 116–129. [Google Scholar] [CrossRef]
- Tu, H.J.; Chao, M.W.; Lee, C.C.; Peng, C.S.; Wu, Y.W.; Lin, T.E.; Chang, Y.W.; Yen, S.C.; Hsu, K.C.; Pan, S.L.; et al. Discovering a novel dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) inhibitor and its impact on tau phosphorylation and amyloid-β formation. J. Enzyme Inhib. Med. Chem. 2024, 349, 2418470. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, M.A.; Tan, C.; Torres-Altoro, M.I.; Lu, F.M.; Plautz, E.; Zhang, S.; Takahashi, M.; Hernandez, A.; Kernie, S.G.; Plattner, F.; et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J. Neurochem. 2016, 138, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Woods, Y.L.; Cohen, P.; Becker, W.; Jakes, R.; Goedert, M.; Wang, X.; Proud, C.G. The kinase DYRK phosphorylates protein-synthesis initiation factor elF2Bε at Ser539 and the microtubule-associated protein tau at Thr212: Potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem. J. 2001, 355, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, B.; Tung, E.J.; Grundke-Iqubal, I.; Iqbal, K.; Gong, C.X. Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur. J. Neurosci. 2007, 26, 3429–3436. [Google Scholar] [CrossRef]
- He, W.; Meng, D.L.; Yang, D.; Chen, Q.Y.; Li, L.; Wang, L.H. miRNA-192-5p targets Dyrk1a to attenuate cerebral injury in MCAO mice by suppressing neuronal apoptosis and neuroinflammation. Folia Histochem. Cytobiol. 2023, 61, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Folkerts, M.M.; Parks, E.A.; Dedman, J.R.; Kaetzel, M.A.; Lyeth, B.G.; Berman, R.F. Phosphorylation of calcium calmodulin-dependent protein kinase II following lateral fluid percussion brain injury in rats. J. Neurotrauma 2007, 24, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.; Lin, S.; Pounder, N.; Mikuni-Takagaki, Y. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics 2016, 70, 45–52. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, X.; Wang, R.; Xie, S.; Hua, Y.; Zhou, S.; Yang, Y.; Zhang, J. Low-intensity pulsed ultrasound promotes the proliferation of human bone mesenchymal stem cells by activating PI3K/AKt signaling pathways. J. Cell Biochem. 2019, 120, 15823–15833. [Google Scholar] [CrossRef] [PubMed]
- Shultz, S.R.; Wright, D.K.; Zheng, P.; Stuchbery, R.; Liu, S.J.; Sashindranath, M.; Medcalf, R.L.; Johnston, L.A.; Hovens, C.M.; Jones, N.C.; et al. Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 2015, 138, 1297–1313. [Google Scholar] [CrossRef]
- Taymans, J.M.; Baekelandt, V. Phosphatases of α-synuclein, LRRK2, and tau: Important players in the phosphorylation-dependent pathology of Parkinsonism. Front. Genet. 2014, 5, 382. [Google Scholar] [CrossRef]
- Bales, J.W.; Ma, X.; Yan, H.Q.; Jenkins, L.W.; Dixon, C.E. Expression of protein phosphatase 2B (calcineurin) subunit A isoforms in rat hippocampus after traumatic brain injury. J. Neurotrauma 2010, 27, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Fesharaki-Zadeh, A. Oxidative Stress in Traumatic Brain Injury. Int. J. Mol. Sci. 2022, 23, 13000. [Google Scholar] [CrossRef]
- Ying, H.; Ye, L. Ultrasound coupled RES-loaded ultrasound microbubble inhibits the proliferation of ovarian cancer cells by expression of long non-coding RNA (lncRNA) involved in apoptosis using real-time PCR. Am. J. Cancer Res. 2023, 13, 4434–4445. [Google Scholar]
- Tang, S.; Gao, P.; Chen, H.; Zhou, X.; Ou, Y.; He, Y. The Role of Iron, Its Metabolism and Ferroptosis in Traumatic Brain Injury. Front. Cell. Neurosci. 2020, 14, 590789. [Google Scholar] [CrossRef]
- Ouyang, Z.Q.; Shao, L.S.; Wang, W.P.; Ke, T.F.; Chen, D.; Zheng, G.R.; Duan, X.R.; Chu, J.X.; Zhu, Y.; Yang, L.; et al. Low intensity pulsed ultrasound ameliorates Adriamycin-induced chronic renal injury by inhibiting ferroptosis. Redox Rep. 2023, 28, 2251237. [Google Scholar] [CrossRef] [PubMed]
- Melov, S.; Adlard, P.A.; Morten, K.; Johnson, F.; Golden, T.R.; Hinerfeld, D.; Schilling, B.; Mavros, C.; Masters, C.L.; Volitakis, I.; et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE. 2007, 2, e536. [Google Scholar] [CrossRef] [PubMed]
- Donison, N.; Palik, J.; Volkening, K.; Strong, M.J. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: Implications for chronic traumatic encephalopathy. Mol. Neurodegener. 2025, 20, 56. [Google Scholar] [CrossRef]
- Hung, T.H.; Liu, Y.C.; Wu, C.H.; Chen, C.C.; Chao, H.; Yang, F.Y.; Chen, S.F. Antenatal low-intensity pulsed ultrasound reduces neurobehavioral deficits and brain injury following dexamethasone-induced intrauterine growth restriction. Brain Pathol. 2021, 31, e12968. [Google Scholar] [CrossRef]
- Ogawa, R.; Morii, A.; Watanabe, A.; Cui, Z.G.; Kondo, T. Bioeffects of ultrasound and its therapeutic application. In Handbook of Ultrasonics and Sonochemistry; Springer: Singapore, 2015; pp. 1–26. [Google Scholar]
- Beccaria, K.; Canney, M.; Goldwirt, L.; Fernandez, C.; Piquet, J.; Perier, M.C.; Lafon, C.; Chapelon, J.Y.; Carpentier, A. Ultrasound-induced opening of the blood-brain barrier to enhance temozolomide and irinotecan delivery: An experimental study in rabbits. J. Neurosurg. 2016, 124, 1602–1610. [Google Scholar] [CrossRef]
- Cross, D.J.; Meabon, J.S.; Cline, M.M.; Richards, T.L.; Stump, A.J.; Cross, C.G.; Minoshima, S.; Banks, W.A.; Cook, D.G. Paclitaxel Reduces Brain Injury from Repeated Head Trauma in Mice. J. Alzheimers Dis. 2019, 67, 859–874. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Dmello, C.; Chen, L.; Arrieta, V.A.; Gonzalez-Buendia, E.; Kane, J.R.; Magnusson, L.P.; Baran, A.; James, C.D.; Horbinski, C.; et al. Ultrasound-mediated Delivery of Paclitaxel for Glioma: A Comparative Study of Distribution, Toxicity, and Efficacy of Albumin-bound Versus Cremophor Formulations. Clin. Cancer Res. 2020, 26, 477–486. [Google Scholar] [CrossRef]
- Pérez-Bárcena, J.; Castaño-León, A.M.; Lagares Gómez-Abascal, A.; Barea-Mendoza, J.A.; Navarro Maín, B.; Pomar Pons, J.; Periañez Párraga, L.D.M.; Ibáñez Domínguez, J.; Chico-Fernández, M.; Llompart-Pou, J.A.; et al. DEXCON TBI trial collaborators. Dexamethasone for the treatment of traumatic brain injured patients with brain contusions and pericontusional edema: Study protocol for a prospective, randomized and double blind trial. Medicine 2021, 100, e24206. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Qi, J.; Shi, Y.Q.; Lu, Z.Y.; Li, R.L.; Huang, G.J.; Ning, B.B.; Hao, L.S.; Wang, H.; Hao, C.N.; et al. Atorvastatin plus therapeutic ultrasound improve postnatal neovascularization in response to hindlimb ischemia via the PI3K-Akt pathway. Am. J. Transl. Res. 2019, 11, 2877–2886. [Google Scholar]
- Feng, Y.; An, R.; Zhang, Y.; Chen, M.; Wang, L.; Duan, Y.; Xing, C. AHNAK-modified microbubbles for the intracranial delivery of triptolide: In-vitro and in-vivo investigations. Int. J. Pharm. 2022, 629, 122351. [Google Scholar] [CrossRef]
- Nath, J.; Roy, R.; Sathyamoorthy, Y.K.; Paul, S.; Goswami, S.; Chakravarty, H.; Paul, R.; Borah, A. Resveratrol as a therapeutic choice for traumatic brain injury: An insight into its molecular mechanism of action. Brain Dis. 2022, 6, 100038. [Google Scholar] [CrossRef]
- Kristiansen, T.K.; Ryaby, J.P.; McCabe, J.; Frey, J.J.; Roe, L.R. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J. Bone Jt. Surg. Am. 1997, 79, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Heckman, J.D.; Ryaby, J.P.; McCabe, J.; Frey, J.J.; Kilcoyne, R.F. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J. Bone Jt. Surg. Am. 1994, 76, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, P.; Alam, M.; Li, S.; Chow, S.K.H.; Zheng, Y.P. Low-Intensity Pulsed Ultrasound Stimulation for Bone Fractures Healing: A Review. J. Ultrasound Med. 2022, 41, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Schofer, M.D.; Block, J.E.; Aigner, J.; Schmelz, A. Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: Results of a randomized sham-controlled trial. BMC Musculoskelet. Disord. 2010, 11, 229. [Google Scholar] [CrossRef]
- Mahoney, C.M.; Morgan, M.R.; Harrison, A.; Humphries, M.J.; Bass, M.D. Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J. Biol. Chem. 2009, 284, 8898–8909. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Yan, Y.; Wu, S.; Yao, X.; Gao, C.; Liu, L.; Yu, Y. LIPUS-induced neurogenesis:A potential therapeutic strategy for cognitive dysfunction in traumatic brain injury. Exp. Neurol. 2024, 371, 114588. [Google Scholar] [CrossRef]
- Jeremias Júnior, S.L.; Camanho, G.L.; Bassit, A.C.; Forgas, A.; Ingham, S.J.; Abdalla, R.J. Low-intensity pulsed ultrasound accelerates healing in rat calcaneus tendon injuries. J. Orthop. Sports Phys. Ther. 2011, 41, 526–531. [Google Scholar] [CrossRef]
- Ilahi, O.A. Editorial Commentary: Treatment Efficacy Found in Animal Studies May Not Translate to Humans. Arthroscopy 2021, 37, 2334–2336. [Google Scholar] [CrossRef]
- Shindo, T.; Eguchi, K.; Monma, Y.; Kanai, H.; Yasuda, S.; Shimokawa, H. Optimal treatment conditions for low-intensity pulsed ultrasound therapy for Alzheimer’s disease: Applications from mice to humans. J. Med. Ultrason. 2024, 51, 419–427. [Google Scholar] [CrossRef]
- Hornsby, T.K.; Jakhmola, A.; Kolios, M.C.; Tavakkoli, J. A Quantitative Study of Thermal and Non-thermal Mechanisms in Ultrasound-Induced Nano-drug Delivery. Ultrasound Med. Biol. 2023, 49, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ito, A.; Xu, S.; Kawai, H.; Kuroki, H.; Aoyama, T. Low-Intensity Pulsed Ultrasound Prompts Both Functional and Histologic Improvements While Upregulating the Brain-Derived Neurotrophic Factor Expression after Sciatic Crush Injury in Rats. Ultrasound Med. Biol. 2021, 47, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Di Ianni, T.; Vyas, D.B.; Huang, Z.; Park, S.; Hosseini-Nassab, N.; Aryal, M.; Airan, R.D. Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention. Front. Neurosci. 2020, 14, 675. [Google Scholar] [CrossRef]
- Ji, R.; Karakatsani, M.E.; Burgess, M.; Smith, M.; Murillo, M.F.; Konofagou, E.E. Cavitation-modulated inflammatory response following focused ultrasound blood-brain barrier opening. J. Control. Release 2021, 337, 458–471. [Google Scholar] [CrossRef] [PubMed]
- McDannold, N.; Wen, P.Y.; Reardon, D.A.; Fletcher, S.M.; Golby, A.J. Cavitation monitoring, treatment strategy, and acoustic simulations of focused ultrasound blood-brain barrier disruption in patients with glioblastoma. J. Control. Release. 2024, 372, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.A.; Sherman, J.; Bortz, E.; Mohammed, A.; Gritton, H.J.; Bensussen, S.; Tang, R.P.; Zemel, D.; Szabo, T.; Han, X. Region-specific effects of ultrasound on individual neurons in the awake mammalian brain. iScience 2021, 24, 102955. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lo, W.L.A.; Hu, H.; Yan, L.; Li, L. Transcranial ultrasound stimulation applied in ischemic stroke rehabilitation: A review. Front. Neurosci. 2022, 16, 964060. [Google Scholar] [CrossRef]
- Zhou, Q.; Shen, W.; Wen, L. Advances in clinical neurorestorative treatments in brain trauma. J. Neurorestoratol. 2025, 13, 100191. [Google Scholar] [CrossRef]
- Deng-Bryant, Y.; Readnower, R.D.; Leung, L.Y.; Cunningham, T.L.; Shear, D.A.; Tortella, F.C. Treatment with amnion-derived cellular cytokine solution (ACCS) induces persistent motor improvement and ameliorates neuroinflammation in a rat model of penetrating ballistic-like brain injury. Restor. Neurol. Neurosci. 2015, 33, 189–203. [Google Scholar] [CrossRef]
- Qiu, X.; Ping, S.; Kyle, M.; Chin, L.; Zhao, L.R. Stem cell factor and granulocyte colony-stimulating factor promote remyelination in the chronic phase of severe traumatic brain injury. bioRxiv 2023. [Google Scholar] [CrossRef]
- Kabatas, S.; Civelek, E.; Sezen, G.B.; Kaplan, N.; Savrunlu, E.C.; Cetin, E.; Diren, F.; Karaoz, E. Functional Recovery After Wharton’s Jelly-Derived Mesenchymal Stem Cell Administration in a Patient with Traumatic Brain Injury: A Pilot Study. Turk. Neurosurg. 2020, 30, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Liu, L.X.; Yang, L.Y.; Zhang, T. Comprehensive rehabilitation in a patient with corpus callosum syndrome after traumatic brain injury: Case report. Medicine 2020, 99, e21218. [Google Scholar] [CrossRef] [PubMed]
LIPUS Parameter Intensity (mW/cm2) | Studies | Molecular Interventions | References |
---|---|---|---|
357 mW/cm2 | NSC-34 cell line | LIPUS activate Ca2+, NFAT, NF-κB, and AKT signaling for reducing oxidative stress in the motor neuron | [33] |
0.25 to 0.75 W/cm2 | Rabit model | LIPUS inhibits the NOS | [38] |
1.6 to 2.0 W/cm | Mice model with TBI | LIPUS increases NO and intracellular Ca2+ levels in endothelial cells | [28] |
117–174 mW/cm2 | Mice model | Upregulates cav-1 for promoting angiogenesis | [39] |
255 mW/cm2, 10 min/d, 10 d | Rat model | Modulates the cilia of the rat | [40] |
50 mW/cm2 | Rat model | LIPUS influx the Ca2+ to regulate neuronal activity | [41] |
528 mW/cm2 | Mice model | LIPUS inhibits the PI3K/Akt-NF-κB signaling for reducing glial inflammation | [42] |
15 W/cm2 | Mice model | Opens calcium-permeable mechanosensitive ion channels, including TRPP1/2, TRPC1, and Piezo1 for neural modulation | [43] |
69.3 mW/cm2 | NSCs | Upregulates Notch1 and Hes1 to regulate proliferation and differentiation on neurons | [44] |
360 mW/cm2 | Rat model | Increases the c-Fos, dendritic spine density, and alters the GluN2A, GluN2B, and GluR1 via BDNF- mediated pathways | [45] |
0.12 W/cm2 | Rat model | Increases the axonal growth by activating netrin-1 and DCC in cortical neurons | [46] |
<100 W/cm2 | Mice model | Decreases IL-17A and Notch1 for protecting oligodendrocytes in neurons, repairs white matter, and improves recovery | [47] |
70 and 165 mW/cm2 | Mice model | Autophagy markers such as LC3BII/LC3BI increased with LIPUS in neurons | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhao, L.; Silveira, P.C.L. Neuroprotective Effects of Low-Intensity Pulsed Ultrasound in Chronic Traumatic Encephalopathy Induced by Repetitive Head Collisions: A Narrative Review. Biology 2025, 14, 1148. https://doi.org/10.3390/biology14091148
Zhang M, Zhao L, Silveira PCL. Neuroprotective Effects of Low-Intensity Pulsed Ultrasound in Chronic Traumatic Encephalopathy Induced by Repetitive Head Collisions: A Narrative Review. Biology. 2025; 14(9):1148. https://doi.org/10.3390/biology14091148
Chicago/Turabian StyleZhang, Min, Liang Zhao, and Paulo Cesar Lock Silveira. 2025. "Neuroprotective Effects of Low-Intensity Pulsed Ultrasound in Chronic Traumatic Encephalopathy Induced by Repetitive Head Collisions: A Narrative Review" Biology 14, no. 9: 1148. https://doi.org/10.3390/biology14091148
APA StyleZhang, M., Zhao, L., & Silveira, P. C. L. (2025). Neuroprotective Effects of Low-Intensity Pulsed Ultrasound in Chronic Traumatic Encephalopathy Induced by Repetitive Head Collisions: A Narrative Review. Biology, 14(9), 1148. https://doi.org/10.3390/biology14091148