Hygiene Practices Against Dermatophytic Fungi: A Review of Strategies to Combat Antifungal Resistance
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Footwear sanitization, sock disinfectants;
- Tinea pedis, onychomycosis, superficial mycoses;
- UV, ozone, laundering, antifungal materials.
- Investigated or reported on sanitization/disinfection of footwear, socks, textiles, or podiatric instruments;
- Focused on fungal pathogens relevant to superficial foot infections;
- Reported on efficacy outcomes or fungal reduction.
- Addressed only pharmacologic treatment without mention of environmental sanitization;
- Focused on systemic or non-dermatological fungal infections;
- Were not available in English.
3. Results
3.1. Chemical Disinfectants
Category | Method | Study Type | Species Investigated | Mechanism of Action | Efficacy Summary | Limitations | References |
---|---|---|---|---|---|---|---|
Chemical Disinfectants | Formaldehyde | In vitro | T. interdigitale | Protein cross-linking and denaturation | Historically used for disinfection. | Toxicity, strong odor, carcinogenic potential | Berberian, 1938 [12] |
Chlorine-based (e.g., bleach) | In vitro | T. mentagrophytes C. albicans | Oxidative damage | Widely recommended for disinfecting hard surfaces. | Corrosive; may damage materials. | Moriello et al., 2013 [13], Estrela et al., 2002 [14] | |
Terbinafine Spray | In vitro | T. mentagrophytes T. rubrum T. tonsurans | Inhibits ergosterol synthesis in fungal membranes | 1% spray effective against T. rubrum on shoe insoles. | Needs repeated application; potential for resistance | Gupta et al., 2001 [18] | |
Quaternary Ammonium Soaks | In vitro | T. rubrum, T. interdigitale, T. indotineae | Disrupts membranes, denatures proteins | Fungicidal with adequate contact time; used in healthcare settings. | May cause skin irritation; risk of improper dilution | Skaastrup et al., 2022 [8] | |
Basic Methods | Boiling | In vivo | T. mentagrophytes | Thermal denaturation of fungal proteins | Effectively removes dermatophytes from certain footwear. | Not suitable for all materials; may damage footwear | Tanaka et al., 2006 [19] |
Sun Exposure | In vivo | T. rubrum T. mentagrophytes Scopulariopsis brevicaulis Aspergillus spp. Hendersonula toruloidea | UV radiation and heat reduce fungal viability | 3-day sun exposure reduces contamination in socks. | Dependent on sun intensity, duration, and material | Amichai et al., 2014 [20] | |
UV Irradiation | UVC Devices | In vitro | T. rubrum T. mentagrophytes | DNA damage via UVC-induced thymine dimer formation | UVC reduced fungal burden by up to 85% in contaminated shoes; ≥ 0.5 J/cm2 at 280 nm LED fully inhibited T. rubrum. | Limited penetration; cannot pass through nail | Cronin et al., 2014 [21], Ghannoum et al., 2012 [22] |
Gas-Based Sanitization | Ozone | In vitro | T. rubrum T. mentagrophytes M. canis A. flavus A. niger Penicillium Alternaria Candida Rhodotorula | Oxidative stress leading to cell damage | Ozone gas fully eliminated T. rubrum after 120 s exposure; effective against dermatophytes and filamentous molds. | Less effective against yeasts; efficacy depends on exposure time | Djaroud et al., 2023 [23] |
Laundering | Hot Water (≥60 °C, 45 min) | In vitro | T. rubrum, C. albicans | Thermal inactivation | Eliminates T. rubrum and C. albicans from clothing. | Not fabric-safe; high energy consumption | Hammer et al., 2011 [24] |
Warm Water (≥30 °C, 10 min) | In vitro | T. rubrum, C. albicans | Thermal inactivation | Removes C. albicans, but not effective for T. rubrum spores. | Spores remain viable | Hammer et al., 2011 [24] | |
Antimicrobial Materials | Silver-Infused Textiles | In vitro | T. rubrum T. mentagrophytes C. albicans | Disrupts respiration and enzymatic processes | Effective against C. albicans and dermatophytes; reduced viability on contact. | Skin reactions in sensitive individuals; cost | Hammer et al., 2012 [25] |
Copper-Infused Textiles | In vitro | T. rubrum T. mentagrophytes C. albicans | Disrupts respiration and enzymatic processes | Minimal activity against C. albicans; limited benefit observed. | Sensitivity risk; lower efficacy | Hammer et al., 2012 [25] | |
Silver-Ion Laundry Machines | In vitro | T. rubrum C. albicans A. flavus | Ions disrupt fungal membranes during rinse cycle | Reduced fungal counts post-wash; ~4 log10 CFU/mL reduction for most species tested. | Limited replication; no analysis of cross-contamination; high cost | Jung et al., 2007 [26] |
3.2. Basic Disinfection Approaches
3.3. Ultraviolet Irradiation
3.4. Gas-Based Sanitization
3.5. Laundering Protocols
3.6. Antimicrobial Materials
3.7. Sterilization of Foot Care Instruments
4. Discussion
- Washing socks, towels, and bed linens in hot water cycles (≥60 °C for 45+ min);
- Using chemical disinfectants or sprays on shoes and insoles, ensuring proper contact time and ventilation;
- Periodically exposing items to direct sunlight where feasible;
- Cleaning and disinfecting shared or high-contact surfaces, including shower floors, laundry baskets, yoga mats, and locker room benches, using bleach, QACs, or hydrogen peroxide-based cleaners;
- Avoiding shared foot care instruments and sterilizing personal tools regularly;
- Replacing or rotating contaminated socks and shoes during treatment;
- Considering antimicrobial textiles or silver-ion laundry appliances where appropriate.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QAC | Quaternary ammonium |
UVC | Ultraviolet-C |
CFU | Colony-forming units |
CDC | The Centers for Disease Control and Prevention |
HLD | High-level disinfection |
OPA | Orthophthalaldehyde |
References
- Leung, A.K.; Barankin, B.; Lam, J.M.; Leong, K.F.; Hon, K.L. Tinea pedis: An updated review. Drugs Context 2023, 12, 2023-5-1. [Google Scholar] [CrossRef]
- Gupta, A.K.; Versteeg, S.G.; Shear, N.H. Onychomycosis in the 21st Century: An Update on Diagnosis, Epidemiology, and Treatment. J. Cutan. Med. Surg. 2017, 21, 525–539. [Google Scholar] [CrossRef]
- Tosti, A.; Elewski, B.E. Onychomycosis: Practical Approaches to Minimize Relapse and Recurrence. Skin Appendage Disord. 2016, 2, 83–87. [Google Scholar] [CrossRef]
- Lipner, S.R.; Scher, R.K. Onychomycosis: Treatment and prevention of recurrence. J. Am. Acad. Dermatol. 2019, 80, 853–867. [Google Scholar] [CrossRef]
- Gupta, A.K.; Versteeg, S.G. The Role of Shoe and Sock Sanitization in the Management of Superficial Fungal Infections of the Feet. J. Am. Podiatr. Med. Assoc. 2019, 109, 141–149. [Google Scholar] [CrossRef]
- Gupta, A.K.; Venkataraman, M. Antifungal resistance in superficial mycoses. J. Dermatol. Treat. 2022, 33, 1888–1895. [Google Scholar] [CrossRef]
- Shenoy, M.M.; Rengasamy, M.; Dogra, S.; Kaur, T.; Asokan, N.; Sarveswari, K.N.; Poojary, S.; Arora, D.; Patil, S.; Das, A.; et al. A multicentric clinical and epidemiological study of chronic and recurrent dermatophytosis in India. Mycoses 2022, 65, 13–23. [Google Scholar] [CrossRef]
- Skaastrup, K.N.; Astvad, K.M.T.; Arendrup, M.C.; Jemec, G.B.E.; Saunte, D.M.L. Disinfection trials with terbinafine-susceptible and terbinafine-resistant dermatophytes. Mycoses 2022, 65, 741–746. [Google Scholar] [CrossRef]
- Gentles, J.C. The isolation of dermatophytes from the floors of communal bathing places. J. Clin. Pathol. 1956, 9, 374–377. [Google Scholar] [CrossRef]
- Kamihama, T.; Kimura, T.; Hosokawa, J.I.; Ueji, M.; Takase, T.; Tagami, K. Tinea pedis outbreak in swimming pools in Japan. Public Health 1997, 111, 249–253. [Google Scholar] [CrossRef]
- Wriedt, T.R.; Skaastrup, K.N.; Everland, A.H.; Astvad, K.M.T.; Arendrup, M.C.; Sigsgaard, V.; Jemec, G.B.E.; Saunte, D.M.L. Rental shoes are not a source of tinea pedis. Dan. Med. J. 2025, in press.
- Berberian, D.A. Dermatophytosis of the feet: Sources and methods of prevention and reinfection. Arch. Derm. Syphilol. 1938, 38, 367–372. [Google Scholar] [CrossRef]
- Moriello, K.A.; Kunder, D.; Hondzo, H. Efficacy of eight commercial disinfectants against Microsporum canis and Trichophyton spp. infective spores on an experimentally contaminated textile surface. Vet. Dermatol. 2013, 24, 621–623, e151–e152. [Google Scholar] [CrossRef]
- Estrela, C.; Estrela, C.R.; Barbin, E.L.; Spanó, J.C.; Marchesan, M.A.; Pécora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef]
- Silverman, J.; Vazquez, J.A.; Sobel, J.D.; Zervos, M.J. Comparative in vitro activity of antiseptics and disinfectants versus clinical isolates of Candida species. Infect. Control Hosp. Epidemiol. 1999, 20, 676–684. [Google Scholar] [CrossRef]
- Romero Starke, K.; Friedrich, S.; Schubert, M.; Kämpf, D.; Girbig, M.; Pretzsch, A.; Nienhaus, A.; Seidler, A. Are Healthcare Workers at an Increased Risk for Obstructive Respiratory Diseases Due to Cleaning and Disinfection Agents? A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5159. [Google Scholar] [CrossRef]
- Ono, T.; Yamashita, K.; Murayama, T.; Sato, T. Microbicidal effect of weak acid hypochlorous solution on various microorganisms. Biocontrol Sci. 2012, 17, 129–133. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ahmad, I.; Summerbell, R.C. Comparative efficacies of commonly used disinfectants and antifungal pharmaceutical spray preparations against dermatophytic fungi. Med. Mycol. 2001, 39, 321–328. [Google Scholar] [CrossRef]
- Tanaka, K.; Katoh, T.; Irimajiri, J.; Taniguchi, H.; Yokozeki, H. Preventive effects of various types of footwear and cleaning methods on dermatophyte adhesion. J. Dermatol. 2006, 33, 528–536. [Google Scholar] [CrossRef]
- Amichai, B.; Grunwald, M.H.; Davidovici, B.; Shemer, A. “Sunlight is said to be the best of disinfectants”*: The efficacy of sun exposure for reducing fungal contamination in used clothes. Isr. Med. Assoc. J. 2014, 16, 431–433. [Google Scholar]
- Cronin, L.J.; Mildren, R.P.; Moffitt, M.; Lauto, A.; Morton, C.O.; Stack, C.M. An investigation into the inhibitory effect of ultraviolet radiation on Trichophyton rubrum. Lasers Med. Sci. 2014, 29, 157–163. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Isham, N.; Long, L. Optimization of an infected shoe model for the evaluation of an ultraviolet shoe sanitizer device. J. Am. Podiatr. Med. Assoc. 2012, 102, 309–313. [Google Scholar] [CrossRef]
- Djaroud, S.; Belmokhtar, Z.; Merad, Y.; Nassour, K.; Belkacemi, M.; Matmour, D.; Merad, Z. The influence of gaseous ozone on the growth of fungi isolated from clinical and environmental samples. Environ. Health Eng. Manag. 2023, 10, 261–265. [Google Scholar]
- Hammer, T.R.; Mucha, H.; Hoefer, D. Infection risk by dermatophytes during storage and after domestic laundry and their temperature-dependent inactivation. Mycopathologia 2011, 171, 43–49. [Google Scholar] [CrossRef]
- Hammer, T.R.; Mucha, H.; Hoefer, D. Dermatophyte susceptibility varies towards antimicrobial textiles. Mycoses 2012, 55, 344–351. [Google Scholar] [CrossRef]
- Jung, W.K.; Kim, S.H.; Koo, H.C.; Shin, S.; Kim, J.M.; Park, Y.K.; Hwang, S.Y.; Yang, H.; Park, Y.H. Antifungal activity of the silver ion against contaminated fabric. Mycoses 2007, 50, 265–269. [Google Scholar] [CrossRef]
- Şahiner, A.; Halat, E.; Alğın Yapar, E. Comparison of bactericidal and fungicidal efficacy of antiseptic formulations according to EN 13727 and EN 13624 standards. Turk. J. Med. Sci. 2019, 49, 1564–1567. [Google Scholar] [CrossRef]
- Finnegan, M.; Linley, E.; Denyer, S.P.; McDonnell, G.; Simons, C.; Maillard, J.Y. Mode of action of hydrogen peroxide and other oxidizing agents: Differences between liquid and gas forms. J. Antimicrob. Chemother. 2010, 65, 2108–2115. [Google Scholar] [CrossRef]
- Gupta, A.K.; Brintnell, W. Ozone gas effectively kills laboratory strains of Trichophyton rubrum and Trichophyton men-tagrophytes using an in vitro test system. J. Dermatol. Treat. 2014, 25, 251–255. [Google Scholar] [CrossRef]
- Elvis, A.M.; Ekta, J.S. Ozone therapy: A clinical review. J. Nat. Sci. Biol. Med. 2011, 2, 66–70. [Google Scholar] [CrossRef]
- Shomali, M.; Opie, D.; Avasthi, T.; Trilling, A. Nitrogen Dioxide Sterilization in Low-Resource Environments: A Feasibility Study. PLoS ONE 2015, 10, e0130043. [Google Scholar] [CrossRef]
- Coyle, B.; Kavanagh, K.; McCann, M.; Devereux, M.; Geraghty, M. Mode of anti-fungal activity of 1,10-phenanthroline and its Cu(II), Mn(II) and Ag(I) complexes. Biometals 2003, 16, 321–329. [Google Scholar] [CrossRef]
- Gupta, A.K.; Daigle, D.; Foley, K.A. The prevalence of culture-confirmed toenail onychomycosis in at-risk patient populations. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1039–1044. [Google Scholar] [CrossRef]
- Infection Prevention and Control Canada (IPAC). Position Statement on Reprocessing of Critical Foot Care Instruments in Community Settings. Available online: https://ipac-canada.org/photos/custom/pdf/24Sep23_Position_Statement%20_ReprocessingCriticalFootCare.pdf (accessed on 19 June 2025).
- Centers for Disease Control and Prevention (CDC). Guideline for Disinfection and Sterilization in Healthcare Facilities. 2008. Available online: https://www.cdc.gov/infection-control/media/pdfs/guideline-disinfection-h.pdf (accessed on 19 June 2025).
- Moskaluk, A.E.; VandeWoude, S. Current Topics in Dermatophyte Classification and Clinical Diagnosis. Pathogens 2022, 11, 957. [Google Scholar] [CrossRef]
- Uhrlaß, S.; Verma, S.B.; Gräser, Y.; Rezaei-Matehkolaei, A.; Hatami, M.; Schaller, M.; Nenoff, P. Trichophyton indotineae—An Emerging Pathogen Causing Recalcitrant Dermatophytoses in India and Worldwide—A Multidimensional Perspective. J. Fungi 2022, 8, 757. [Google Scholar] [CrossRef]
Item | Disinfection Method | Agent/Tool | Exposure Conditions | Efficacy | Limitations/Considerations |
---|---|---|---|---|---|
White Cotton Socks | -Laundering (thermal) -Chemical soak -Surface spray | -Hot water (≥60 °C) [24] -Chlorine bleach (1:10) [13] -QAC (0.3%) [8] -Hydrogen peroxide (0.5%) [13] | -60 °C main wash cycle ≥ 45 min [24] -Bleach 10 min soak [13] -QAC 24 h soak [8] -Peroxide: 5 sprays, 10 min [13] | -100% kill of dermatophytes and Candida with hot wash and bleach [13,24] -QAC: 100% kill after 24 h [8] -Peroxide: 100% sporicidal with 5 sprays [13] | -Bleach degrades fabric, strong odor [13] -QAC requires long soaking [8] -Peroxide needs full coverage [13] |
Colored Socks | -Laundering (thermal) -Chemical soak/spray | -Hot water (≥60 °C) [24] -QAC (0.3%) [8] -Hypochlorous acid (HOCl 200 ppm) [17] | -Same as above | -Same QAC efficacy as white socks [8] -HOCl: High fungicidal action against C. albicans and dermatophytes [17] | -Avoid chlorine bleach to preserve fabric color [17] -HOCl is safer, less corrosive, but may be less accessible [17] |
Wool Socks | -Chemical soak/spray only (no hot water or bleach) | -QAC (0.3%) [8] -HOCl (200 ppm) [17] | -QAC 24 h soak [8] -HOCl 10–15 min spray or soak [17] | -QAC: 100% kill after 24 hrs [8] -HOCl: Effective with minimal textile damage [17] | -Avoid hot water or bleach to prevent wool damage [24] -Must ensure full immersion or spray coverage [17] |
Shoes | -Antifungal spray -UV-C light -Ozone gas -Boiling (for some) | -Terbinafine spray [18] -UV-C exposure [21,22] -Ozone generator [23,29] -Boiling water [19] | -Daily application for spray [18] -UV-C for 5–15 min [21,22] -Ozone: ≥120 s [23] -Boiling: 100 °C, 5–10 min [19] | -Terbinafine reduces T. rubrum load [18] -UV-C and ozone: 100% inhibition in studies [21,22,23] -Boiling kills spores [19] | -UV-C requires safety precautions and surface contact [21,22] -Ozone needs ventilation [29] -Boiling damages non-rubber shoes [19] |
Surfaces (Floors, mats, laundry receptacles) | -Alcohol-based disinfection -Hydrogen peroxide -HOCl spray | -Isopropyl alcohol 70% [27] -Hydrogen peroxide 0.5% [13] -HOCl 200 ppm [17] | -IPA: ≥1–5 min contact [27] -Peroxide: 5 sprays, 10 min contact [13] -HOCl: 10 min soak/spray [17] | -IPA: ≥4-log reduction in fungal load [27] -Peroxide: 100% sporicidal with 5 sprays [13] -HOCl: High efficacy [17] | -IPA not sporicidal, evaporates quickly [27] -Peroxide needs proper dosage [13] -HOCl is safer but less available [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.K.; Taylor, D.; Wang, T.; Cooper, E.A.; Saunte, D.M.L. Hygiene Practices Against Dermatophytic Fungi: A Review of Strategies to Combat Antifungal Resistance. Biology 2025, 14, 1016. https://doi.org/10.3390/biology14081016
Gupta AK, Taylor D, Wang T, Cooper EA, Saunte DML. Hygiene Practices Against Dermatophytic Fungi: A Review of Strategies to Combat Antifungal Resistance. Biology. 2025; 14(8):1016. https://doi.org/10.3390/biology14081016
Chicago/Turabian StyleGupta, Aditya K., Daniel Taylor, Tong Wang, Elizabeth A. Cooper, and Ditte Marie L. Saunte. 2025. "Hygiene Practices Against Dermatophytic Fungi: A Review of Strategies to Combat Antifungal Resistance" Biology 14, no. 8: 1016. https://doi.org/10.3390/biology14081016
APA StyleGupta, A. K., Taylor, D., Wang, T., Cooper, E. A., & Saunte, D. M. L. (2025). Hygiene Practices Against Dermatophytic Fungi: A Review of Strategies to Combat Antifungal Resistance. Biology, 14(8), 1016. https://doi.org/10.3390/biology14081016